scholarly journals Integrin α3β1 in hair bulge stem cells modulates CCN2 expression and promotes skin tumorigenesis

2020 ◽  
Vol 3 (7) ◽  
pp. e202000645
Author(s):  
Veronika Ramovs ◽  
Ana Krotenberg Garcia ◽  
Ji-Ying Song ◽  
Iris de Rink ◽  
Maaike Kreft ◽  
...  

Epidermal-specific deletion of integrin α3β1 almost completely prevents the formation of papillomas during 7,12-Dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA) two-stage skin carcinogenesis. This dramatic decrease in tumorigenesis was thought to be due to an egress and premature differentiation of α3β1-depleted hair bulge (HB) stem cells (SCs), previously considered to be the cancer cells-of-origin in the DMBA/TPA model. Using a reporter mouse line with inducible deletion of α3β1 in HBs, we show that HB SCs remain confined to their niche regardless of the presence of α3β1 and are largely absent from skin tumors. However, tumor formation was significantly decreased in mice deficient for α3β1 in HB SCs. RNA sequencing of HB SCs isolated from short-term DMBA/TPA–treated skin showed α3β1-dependent expression of the matricellular protein connective tissue growth factor (CCN2), which was confirmed in vitro, where CCN2 promoted colony formation and 3D growth of transformed keratinocytes. Together, these findings show that HBs contribute to skin tumorigenesis in an α3β1-dependent manner and suggest a role of HB SCs in creating a permissive environment for tumor growth through the modulation of CCN2 secretion.

2019 ◽  
Vol 116 (17) ◽  
pp. 8380-8389 ◽  
Author(s):  
Ralitsa R. Madsen ◽  
Rachel G. Knox ◽  
Wayne Pearce ◽  
Saioa Lopez ◽  
Betania Mahler-Araujo ◽  
...  

ThePIK3CAgene, which encodes the p110α catalytic subunit of PI3 kinase (PI3K), is mutationally activated in cancer and in overgrowth disorders known asPIK3CA-related overgrowth spectrum (PROS). To determine the consequences of geneticPIK3CAactivation in a developmental context of relevance to both PROS and cancer, we engineered isogenic human induced pluripotent stem cells (iPSCs) with heterozygous or homozygous knockin ofPIK3CAH1047R. While heterozygous iPSCs remained largely similar to wild-type cells, homozygosity forPIK3CAH1047Rcaused widespread, cancer-like transcriptional remodeling, partial loss of epithelial morphology, up-regulation of stemness markers, and impaired differentiation to all three germ layers in vitro and in vivo. Genetic analysis ofPIK3CA-associated cancers revealed that 64% had multiple oncogenicPIK3CAcopies (39%) or additional PI3K signaling pathway-activating “hits” (25%). This contrasts with the prevailing view thatPIK3CAmutations occur heterozygously in cancer. Our findings suggest that a PI3K activity threshold determines pathological consequences of oncogenicPIK3CAactivation and provide insight into the specific role of this pathway in human pluripotent stem cells.


2018 ◽  
Author(s):  
Ralitsa R. Madsen ◽  
Rachel G. Knox ◽  
Wayne Pearce ◽  
Saioa Lopez ◽  
Betania Mahler-Araujo ◽  
...  

AbstractThe PIK3CA gene, which encodes the p110α catalytic subunit of PI3-kinase (PI3K), is mutationally activated in cancer and in overgrowth disorders known as PIK3CA-related overgrowth spectrum (PROS). To determine the consequences of genetic PIK3CA activation in a developmental context of relevance to both PROS and cancer, we engineered isogenic human induced pluripotent stem cells (iPSCs) with heterozygous or homozygous knock-in of PIK3CAH1047R. While heterozygous iPSCs remained largely similar to wild-type cells, homozygosity for PIK3CAH1047R caused widespread, cancer-like transcriptional remodeling, partial loss of epithelial morphology, upregulation of stemness markers and impaired differentiation to all three germ layers in vitro and in vivo. Genetic analysis of PIK3CA-associated cancers revealed that 64 % had multiple oncogenic PIK3CA copies (39 %) or additional PI3K signaling pathway-activating “hits” (25 %). This contrasts with the prevailing view that PIK3CA mutations occur heterozygously in cancer. Our findings suggest that a PI3K activity threshold determines pathological consequences of oncogenic PIK3CA activation and provide the first insight into the specific role of this pathway in human pluripotent stem cells.


Author(s):  
Merve Erkisa ◽  
Nazlihan Aztopal ◽  
Elif Erturk ◽  
Engin Ulukaya ◽  
Veysel T. Yilmaz ◽  
...  

Background: Cancer stem cells (CSC) are subpopulation within the tumor that acts a part in the initiation, progression, recurrence, resistance to drugs and metastasis of cancer. It is well known that epigenetic changes lead to tumor formation in cancer stem cells and show drug resistance. Epigenetic modulators and /or their combination with different agents have been used in cancer therapy. Objective: In our study we scope out the effects of combination of a histone deacetylases inhibitor, valproic acid (VPA), and Cu(II) complex [Cu(barb-κN)(barb-κ2N,O)(phen-κN,N’)]·H2O] on cytotoxicity/apoptosis in a stem-cell enriched population (MCF-7s) obtained from parental breast cancer cell line (MCF-7). Methods: Viability of the cells was measured by the ATP assay. Apoptosis was elucidated via the assessment of caspase-cleaved cytokeratin 18 (M30 ELISA) and a group of flow cytometry analysis (caspase 3/7 activity, phosphatidylserine translocation by annexin V-FITC assay, DNA damage and oxidative stress) and 2ˈ,7ˈ–dichlorofluorescein diacetate staining. Results: The VPA combined with Cu(II) complex showed anti proliferative activity on MCF-7s cells in a dose- and time-dependently. Treatment with combination of 2.5 mM VPA and 3.12 μM Cu(II) complex induces oxidative stress in a time-dependent manner, as well as apoptosis that is evidenced by the increase in caspase 3/7 activity, positive annexin-V-FITC, and increase in M30 levels. Conclusion: The results suggest that the combination therapy induces apoptosis following increased oxidative stress, thereby making it a possible promising therapeutic strategy that further analysis is required.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Dasol Kim ◽  
Hui-Yun Hwang ◽  
Eun Sun Ji ◽  
Jin Young Kim ◽  
Jong Shin Yoo ◽  
...  

AbstractDisorders of autophagy, a key regulator of cellular homeostasis, cause a number of human diseases. Due to the role of autophagy in metabolic dysregulation, there is a need to identify autophagy regulators as therapeutic targets. To address this need, we conducted an autophagy phenotype-based screen and identified the natural compound kaempferide (Kaem) as an autophagy enhancer. Kaem promoted autophagy through translocation of transcription factor EB (TFEB) without MTOR perturbation, suggesting it is safe for administration. Moreover, Kaem accelerated lipid droplet degradation in a lysosomal activity-dependent manner in vitro and ameliorated metabolic dysregulation in a diet-induced obesity mouse model. To elucidate the mechanism underlying Kaem’s biological activity, the target protein was identified via combined drug affinity responsive target stability and LC–MS/MS analyses. Kaem directly interacted with the mitochondrial elongation factor TUFM, and TUFM absence reversed Kaem-induced autophagy and lipid degradation. Kaem also induced mitochondrial reactive oxygen species (mtROS) to sequentially promote lysosomal Ca2+ efflux, TFEB translocation and autophagy induction, suggesting a role of TUFM in mtROS regulation. Collectively, these results demonstrate that Kaem is a potential therapeutic candidate/chemical tool for treating metabolic dysregulation and reveal a role for TUFM in autophagy for metabolic regulation with lipid overload.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Zhang ◽  
Guoyu Yin ◽  
Heping Zhao ◽  
Hanzhi Ling ◽  
Zhen Xie ◽  
...  

AbstractIn inflamed joints, enhanced hyaluronic acid (HA) degradation is closely related to the pathogenesis of rheumatoid arthritis (RA). KIAA1199 has been identified as a hyaladherin that mediates the intracellular degradation of HA, but its extracellular function remains unclear. In this study, we found that the serum and synovial levels of secreted KIAA1199 (sKIAA1199) and low-molecular-weight HA (LMW-HA, MW < 100 kDa) in RA patients were significantly increased, and the positive correlation between them was shown for the first time. Of note, treatment with anti-KIAA1199 mAb effectively alleviated the severity of arthritis and reduced serum LMW-HA levels and cytokine secretion in collagen-induced arthritis (CIA) mice. In vitro, sKIAA1199 was shown to mediate exogenous HA degradation by attaching to the cell membrane of RA fibroblast-like synoviosytes (RA FLS). Furthermore, the HA-degrading activity of sKIAA1199 depended largely on its adhesion to the membrane, which was achieved by its G8 domain binding to ANXA1. In vivo, kiaa1199-KO mice exhibited greater resistance to collagen-induced arthritis. Interestingly, this resistance could be partially reversed by intra-articular injection of vectors encoding full-length KIAA1199 instead of G8-deleted KIAA119 mutant, which further confirmed the indispensable role of G8 domain in KIAA1199 involvement in RA pathological processes. Mechanically, the activation of NF-κB by interleukin-6 (IL-6) through PI3K/Akt signaling is suggested to be the main pathway to induce KIAA1199 expression in RA FLS. In conclusion, our study supported the contribution of sKIAA1199 to RA pathogenesis, providing a new therapeutic target for RA by blocking sKIAA1199-mediated HA degradation.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


Author(s):  
Gleb Nikolaevich Zyuz’kov ◽  
Larisa Arkad`evna Miroshnichenko ◽  
Elena Vladislavovna Simanina ◽  
Larisa Alexandrovna Stavrova ◽  
Tatyana Yur`evna Polykova

Abstract Objectives The development of approaches to the treatment of neurodegenerative diseases caused by alcohol abuse by targeted pharmacological regulation of intracellular signaling transduction of progenitor cells of nerve tissue is promising. We studied peculiarities of participation of NF-кB-, сАМР/РКА-, JAKs/STAT3-, ERK1/2-, p38-pathways in the regulation of neural stem cells (NSC) and neuronal-committed progenitors (NCP) in the simulation of ethanol-induced neurodegeneration in vitro and in vivo. Methods In vitro, the role of signaling molecules (NF-кB, сАМР, РКА, JAKs, STAT3, ERK1/2, p38) in realizing the growth potential of neural stem cells (NSC) and neuronal-committed progenitors (NCP) in ethanol-induced neurodegeneration modeled in vitro and in vivo was studied. To do this, the method of the pharmacological blockade with the use of selective inhibitors of individual signaling molecules was used. Results Several of fundamental differences in the role of certain intracellular signaling molecules (SM) in proliferation and specialization of NSC and NCP have been revealed. It has been shown that the effect of ethanol on progenitors is accompanied by the formation of a qualitatively new pattern of signaling pathways. Data have been obtained on the possibility of stimulation of nerve tissue regeneration in ethanol-induced neurodegeneration by NF-кB and STAT3 inhibitors. It has been found that the blockage of these SM stimulates NSC and NCP in conditions of ethanol intoxication and does not have a «negative» effect on the realization of the growth potential of intact progenitors (which will appear de novo during therapy). Conclusions The results may serve as a basis for the development of fundamentally new drugs to the treatment of alcoholic encephalopathy and other diseases of the central nervous system associated with alcohol abuse.


2021 ◽  
Vol 22 (11) ◽  
pp. 5828
Author(s):  
Kyoko Imanaka-Yoshida

Tenascin-C (TNC) is a large extracellular matrix (ECM) glycoprotein and an original member of the matricellular protein family. TNC is transiently expressed in the heart during embryonic development, but is rarely detected in normal adults; however, its expression is strongly up-regulated with inflammation. Although neither TNC-knockout nor -overexpressing mice show a distinct phenotype, disease models using genetically engineered mice combined with in vitro experiments have revealed multiple significant roles for TNC in responses to injury and myocardial repair, particularly in the regulation of inflammation. In most cases, TNC appears to deteriorate adverse ventricular remodeling by aggravating inflammation/fibrosis. Furthermore, accumulating clinical evidence has shown that high TNC levels predict adverse ventricular remodeling and a poor prognosis in patients with various heart diseases. Since the importance of inflammation has attracted attention in the pathophysiology of heart diseases, this review will focus on the roles of TNC in various types of inflammatory reactions, such as myocardial infarction, hypertensive fibrosis, myocarditis caused by viral infection or autoimmunity, and dilated cardiomyopathy. The utility of TNC as a biomarker for the stratification of myocardial disease conditions and the selection of appropriate therapies will also be discussed from a clinical viewpoint.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunyang Li ◽  
Shuangqing Yang ◽  
Huaqing Ma ◽  
Mengjia Ruan ◽  
Luyan Fang ◽  
...  

Abstract Background Cervical cancer is a type of the most common gynecology tumor in women of the whole world. Accumulating data have shown that icariin (ICA), a natural compound, has anti-cancer activity in different cancers, including cervical cancer. The study aimed to reveal the antitumor effects and the possible underlying mechanism of ICA in U14 tumor-bearing mice and SiHa cells. Methods The antitumor effects of ICA were investigated in vivo and in vitro. The expression of TLR4/MyD88/NF-κB and Wnt/β-catenin signaling pathways were evaluated. Results We found that ICA significantly suppressed tumor tissue growth and SiHa cells viability in a dose-dependent manner. Also, ICA enhanced the anti-tumor humoral immunity in vivo. Moreover, ICA significantly improved the composition of the microbiota in mice models. Additionally, the results clarified that ICA significantly inhibited the migration, invasion capacity, and expression levels of TGF-β1, TNF-α, IL-6, IL-17A, IL-10 in SiHa cells. Meanwhile, ICA was revealed to promote the apoptosis of cervical cancer cells by down-regulating Ki67, survivin, Bcl-2, c-Myc, and up-regulating P16, P53, Bax levels in vivo and in vitro. For the part of mechanism exploration, we showed that ICA inhibits the inflammation, proliferation, migration, and invasion, as well as promotes apoptosis and immunity in cervical cancer through impairment of TLR4/MyD88/NF-κB and Wnt/β-catenin pathways. Conclusions Taken together, ICA could be a potential supplementary agent for cervical cancer treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


Sign in / Sign up

Export Citation Format

Share Document