scholarly journals NUMERICAL RESEARCH OF THE MOISTURE CONDENSATION ELIMINATION IN THE CABIN OF THE UNIFIED TECHNOLOGICAL ELECTRIC TRANSPORT VEHICLE

2018 ◽  
Vol 15 (4) ◽  
pp. 538-546
Author(s):  
N. M. Filkin ◽  
A. M. Tatarkin

Introduction. This article deals with the problem of moisture condensation inside the cabin of the technological electric transport vehicle. The hypothesis of using the forced air ventilation in the cabin is substantiated, by which such problem could be solved.Materials and methods. The article describes the application of the ANSYS Fluent Software Package to assess the effect of the location and shape of the ducts on the ventilation process inside the cabin. Accordingly, the key stages of air flow modeling in this program are considered.Results. The main content of the research is to analyze the modeling airflow process in the cabins with a different configuration of inlet and outlet nozzles. Therefore, basing on the analysis of the obtained airflow velocity contours, the conclusion is made about the rational arrangement of the inlet and outlet channels.Discussion and conclusions. The conclusion is made about the necessity of the further research that would refer to creating a three-dimensional model of the cabin. The results of the research as well as resolutions are taken into account.

2018 ◽  
Vol 56 (3) ◽  
pp. 370
Author(s):  
Nguyen Van Thang ◽  
Ha Tien Vinh ◽  
Bui Dinh Tri ◽  
Nguyen Duy Trong

This article carries out the numerical simulation of airflow over three dimensional car models using ANSYS Fluent software. The calculations have been performed by using realizable k-e turbulence model. The external airflow field of the simplified BMV M6 model with or without a wing is simulated. Several aerodynamic characteristics such as pressure distribution, velocity contours, velocity vectors, streamlines, turbulence kinetic energy and turbulence dissipation energy are analyzed in this study. The aerodynamic forces acting on the car model is calculated and compared with other authors.


Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Sergio Nardini ◽  
Gianluca Tartaglione

Solar chimney is a new method to produce electrical power. It employs solar radiation to raise the temperature of the air and the buoyancy of warm air to accelerate the air stream flowing through the system. By converting thermal energy into the kinetic energy of air movement, solar chimneys have a number of different applications such as ventilation, passive solar heating and cooling of buildings, solar-energy drying, and power generation. Moreover, it can be employed as an energy conversion system from solar to mechanical. A component, such as a turbine or piezoelectric component, set in the path of the air current, converts the kinetic energy of the flowing air into electricity. In this paper, a numerical investigation on a prototypal solar chimney system integrated in a south facade of a building is presented. The chimney is 4.0 m high, 1.5 m wide whereas the thickness is 0.20 m for the vertical parallel walls configuration and at the inlet 0.34 m and at the outlet 0.20 m for convergent configuration. The chimney consists of a converging channel with one vertical wall and one inclined of 2°. The analysis is carried out on a three-dimensional model in airflow and the governing equations are given in terms of k-ε turbulence model. The problem is solved by means of the commercial code Ansys-Fluent. The numerical analysis was intended to examine the effect of the solar chimney’s height and spacing. Further, comparison between radiative and non-radiative model is examined and discussed. Results are given in terms of wall temperature distributions, air velocity and temperature fields and transversal profiles for a uniform wall heat flux on the vertical wall equal to 300 W/m2. Thermal and fluid dynamics behaviors are evaluated in order to have some indications to improve the energy efficiency of the system.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Thandiwe Bongani Radebe ◽  
Zhongjie Huan ◽  
Jeffrey Baloyi

Purpose South Africa is the highest consumer of commercial energy per capita in Africa, ranking 16th in the world for primary energy consumption. It is also ranked among the bottom 50 of the 150 countries regarding energy efficiency. The cold chain is a large contributor through refrigerated transport vehicles. To comply with the changing climate regulations, cryogenic and eutectic systems are systems with great potential for small distance refrigerated transport. The purpose of this paper is to introduce eutectic system to medium distance refrigerated transport. Design/methodology/approach This study presents the potential use of Eutectic plates inside a medium refrigerated transport vehicle, by numerically investigating the characteristics of phase change material eutectic plates applied at low-temperature ranges. A physical model and a mathematical model for three-dimensional transient natural flow were developed as proposed by Xiaofeng and Zhang. Using the governing equation of mass, momentum and energy conservation, three Eutectic plate configurations were modeled and simulated in ANSYS Fluent for 5 h. Findings A uniform heat transfer and airflow condition inside a refrigerated compartment were predicted using the Reynolds stress model. The configuration with eutectic plates placed at the top and side showed great potential for the system functioning in the South African climate. Research limitations/implications Medium refrigerated transport vehicle. Originality/value This configuration had a high-temperature distribution across the compartment and promoted high air circulations, showing that it could be ideal for medium refrigerated transport vehicles delivering perishable foodstuffs or non-food goods.


2018 ◽  
Vol 12 (4) ◽  
pp. 4300-4328
Author(s):  
Pasymi Pasymi ◽  
Y. W. Budhi ◽  
A. Irawan ◽  
Y. Bindar

Flow structure inside a chamber greatly determines the process performances. Therefore, the flow structure inside a chamber are often constructed in such a way as an effort to obtain equipment performances in accordance with the expectations. This study explored flow structure inside several chamber geometries and operating conditions. Three types of chamber, namely; GTC, DTC and TJC were set as the investigated chambers. The Computational Fluid Dynamics technique, supported by some experimental data from the literature, is used as an investigation method. The RANS based models, under Ansys-Fluent software were used in this numerical investigation. Simulation results revealed that the flow structures of GTC and DTC are predominantly created by spiral and vortex patterns. The vortex stabilizer diameter in the GTC affects the vortex pattern, velocity profile and pressure drop. The flow structure of DTC presents the most complex behavior. The flow structure inside TJC, in the case of unconfined outlet boundary, is characterized by the helical and wavy jet pattern. This structure is determined by the initial tangential intensity (IIT) and the inlet aspect ratio (RIA). The structures of vortex, helical, and wavy axial flow are properly constructed and visualized in this paper. There is no a turbulence model which is always superior to the other models, consistently. The standard k-ε model exhibits the realistic and robust performances among  all of investigatied cases.


2009 ◽  
Vol 16-19 ◽  
pp. 1199-1202
Author(s):  
De Zhi Sun ◽  
Xiao Ying Chen ◽  
Wei Li Liu

The V-cone flow meter is widely used to measure gas, liquid and high temperature steam in current industrial production. By applying the FLUENT software of CFD, a three-dimensional model about the V-cone flow meter is built. The effect of technical parameters on flow in the V-cone flow meter field has been studied by using computational fluid dynamics (CFD). The data fitting for empirical formula of the outflow coefficient was completed by using MATLAB software to provide some basis for the further production and exploration. The simulation outflow coefficient is relevant to the parameter of the effective diameter ratio , the diameter of pipe D, front-cone angle and back-cone angle .


2008 ◽  
Vol 44 (1) ◽  
pp. 73-81 ◽  
Author(s):  
B. Taraba ◽  
V. Slovak ◽  
Z. Michalec ◽  
J. Chura ◽  
A. Taufer

A commercial CFD software program, Fluent, was used to study oxidation processes in the longwall mined-out (gob) area. A three-dimensional model of the gob area with an advancing coal face has been developed. For the model, typical oxidation behavior of a bituminous coal from the Ostrava-Karvin? District was incorporated as resulted from laboratory investigations. The longwall gob area was designed on the basis of the actual longwall face district. Detailed measurements in the district then enabled re-verification of the model outputs with actual data in situ. The main attention was paid to modelling the effect of grain size of the coal left in the mined-out area on the oxidation heat and gases evolution. Numerical simulations confirmed the existence of an 'optimal' zone for intense development of the spontaneous heating process in the gob area.


Author(s):  
Islam Ahmed Mohamed Mohamed El Sayed ◽  
Ahmed Farouk AbdelGawad

This paper shows different simulations of airflow patterns for the human face during exhalation with and without wearing a protective mask. The nasal airways were defined based on biological anthropology and medicine instructions. A three-dimensional body-manikin of African athlete of 1.8 meters tall was employed to the expiration (exhalation) flow study using ANSYS-Fluent software. There were two different mask models included in the flow simulations and were manufactured by means of 3D-printing technology. The two manufactured masks were designed using SolidWorks software. The study was carried out four times during the exhalation process of a human wearing the two masks and without wearing them. The velocity magnitudes were significantly different while wearing the mask in comparison to the cases of not wearing it. The results demonstrate the capability of using 3D-printed masks as a replacement of the traditional medical masks (i.e., N95 and surgical masks) with retaining the same functions of the protective mask. Thus, based on the present study and due to the great shortage of surgical and medical masks availability locally and globally, the 3D-printed masks might be a temporary solution to limit the vast spread of contagious diseases like the dangerous COVID-19 outbreak.


2018 ◽  
Vol 168 ◽  
pp. 02003
Author(s):  
Miroslav Rimár ◽  
Andrii Kulikov ◽  
Marcel Fedak ◽  
Milan Abraham

The research subject of the current work is heating of the closed area by the forced air ventilation system with heat recovery ventilator and floor radiators. The simulation model was made in ANSYS Fluent 14.0. In the simulation were taken to account the secondary thermal gains from the computers, monitors and humans. The results of the simulation approved that in the modern thermal passive houses heat balance calculations should observe secondary thermal gains from the installed equipment. Also were investigated the air circulation in the closed area and the influence of the different barriers which were installed in the laboratory.


Author(s):  
N. M. Fil’kin ◽  
A. M. Tatarkin

This article discusses the process of creating a 3D-model of the cab of a unified machine of technological electric transport, generation of the calculated grid on the basis of the created model. Also, the parameters of the solver (Solution Setup) of the ANSYS Fluent software module for the study of the created model are selected. The main content of the study is the analysis of the results of modeling the airflow in the designed cabin. The analysis showed that the chosen cabin configuration will be able to eliminate the condensation process in critical areas. The conclusion is made about the need for further research, which will be aimed at developing the design of air ducts and used in the design of a unified machine of technological electric transport.


2020 ◽  
pp. 1420326X2094116 ◽  
Author(s):  
Bo Zhang ◽  
Guangyu Guo ◽  
Chao Zhu ◽  
Zhiming Ji ◽  
Chao-Hsin Lin

Aerosol generated from a human cough can be a potential major indoor health risk due to the possible transmission of infectious respiratory diseases to surrounding individuals within the same room and even could spread out via air-ventilation/conditioning systems. This study aims to investigate the transport characteristics and trajectory of coughed aerosols under the influence of conditioned air ventilation as well as near-by human breathing zone using computational fluid dynamics (CFD). An experimental system consisting of air-conditioned space with multiple inlets and outlets, a cough simulator and a receiver was built to validate the CFD predictions. The comparison is in good agreement. The CFD model was established as a transient three-dimensional multiphase multicomponent Eulerian–Lagrangian model and numerically solved using commercial software ANSYS Fluent. Both gas and liquid phases were modelled as multicomponent mixtures. With this CFD model, the indoor transport and trajectory of coughed aerosols can be accounted for the distributions of portions inhaled by each manikin, deposited on surfaces of manikins and chamber walls, as well as recirculated back into the ventilation system. Results reveal that the aerosol source location and the ambient air movement can be crucial factors of aerosol trajectory in terms of direct and indirect influence.


Sign in / Sign up

Export Citation Format

Share Document