scholarly journals Computational Investigation of The Exhalation Process with and Without Wearing a Protective Mask

Author(s):  
Islam Ahmed Mohamed Mohamed El Sayed ◽  
Ahmed Farouk AbdelGawad

This paper shows different simulations of airflow patterns for the human face during exhalation with and without wearing a protective mask. The nasal airways were defined based on biological anthropology and medicine instructions. A three-dimensional body-manikin of African athlete of 1.8 meters tall was employed to the expiration (exhalation) flow study using ANSYS-Fluent software. There were two different mask models included in the flow simulations and were manufactured by means of 3D-printing technology. The two manufactured masks were designed using SolidWorks software. The study was carried out four times during the exhalation process of a human wearing the two masks and without wearing them. The velocity magnitudes were significantly different while wearing the mask in comparison to the cases of not wearing it. The results demonstrate the capability of using 3D-printed masks as a replacement of the traditional medical masks (i.e., N95 and surgical masks) with retaining the same functions of the protective mask. Thus, based on the present study and due to the great shortage of surgical and medical masks availability locally and globally, the 3D-printed masks might be a temporary solution to limit the vast spread of contagious diseases like the dangerous COVID-19 outbreak.

2018 ◽  
Vol 56 (3) ◽  
pp. 370
Author(s):  
Nguyen Van Thang ◽  
Ha Tien Vinh ◽  
Bui Dinh Tri ◽  
Nguyen Duy Trong

This article carries out the numerical simulation of airflow over three dimensional car models using ANSYS Fluent software. The calculations have been performed by using realizable k-e turbulence model. The external airflow field of the simplified BMV M6 model with or without a wing is simulated. Several aerodynamic characteristics such as pressure distribution, velocity contours, velocity vectors, streamlines, turbulence kinetic energy and turbulence dissipation energy are analyzed in this study. The aerodynamic forces acting on the car model is calculated and compared with other authors.


2018 ◽  
Vol 12 (4) ◽  
pp. 4300-4328
Author(s):  
Pasymi Pasymi ◽  
Y. W. Budhi ◽  
A. Irawan ◽  
Y. Bindar

Flow structure inside a chamber greatly determines the process performances. Therefore, the flow structure inside a chamber are often constructed in such a way as an effort to obtain equipment performances in accordance with the expectations. This study explored flow structure inside several chamber geometries and operating conditions. Three types of chamber, namely; GTC, DTC and TJC were set as the investigated chambers. The Computational Fluid Dynamics technique, supported by some experimental data from the literature, is used as an investigation method. The RANS based models, under Ansys-Fluent software were used in this numerical investigation. Simulation results revealed that the flow structures of GTC and DTC are predominantly created by spiral and vortex patterns. The vortex stabilizer diameter in the GTC affects the vortex pattern, velocity profile and pressure drop. The flow structure of DTC presents the most complex behavior. The flow structure inside TJC, in the case of unconfined outlet boundary, is characterized by the helical and wavy jet pattern. This structure is determined by the initial tangential intensity (IIT) and the inlet aspect ratio (RIA). The structures of vortex, helical, and wavy axial flow are properly constructed and visualized in this paper. There is no a turbulence model which is always superior to the other models, consistently. The standard k-ε model exhibits the realistic and robust performances among  all of investigatied cases.


2018 ◽  
Vol 15 (4) ◽  
pp. 538-546
Author(s):  
N. M. Filkin ◽  
A. M. Tatarkin

Introduction. This article deals with the problem of moisture condensation inside the cabin of the technological electric transport vehicle. The hypothesis of using the forced air ventilation in the cabin is substantiated, by which such problem could be solved.Materials and methods. The article describes the application of the ANSYS Fluent Software Package to assess the effect of the location and shape of the ducts on the ventilation process inside the cabin. Accordingly, the key stages of air flow modeling in this program are considered.Results. The main content of the research is to analyze the modeling airflow process in the cabins with a different configuration of inlet and outlet nozzles. Therefore, basing on the analysis of the obtained airflow velocity contours, the conclusion is made about the rational arrangement of the inlet and outlet channels.Discussion and conclusions. The conclusion is made about the necessity of the further research that would refer to creating a three-dimensional model of the cabin. The results of the research as well as resolutions are taken into account.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Zdzislaw Salamonowicz ◽  
Malgorzata Majder-Lopatka ◽  
Anna Dmochowska ◽  
Aleksandra Piechota-Polanczyk ◽  
Andrzej Polanczyk

Contamination of toxic and odorous gases emitted from stacks in buildings located in an urban environment are potential health hazards to citizens. A simulation using the computational fluid dynamic technique may provide detailed data on the flammable region and spatial dispersion of released gases. Concentrations or emissions associated with garage sources and garage-to-house migration rates are needed to estimate potential exposures and risk levels. Therefore, the aim of the study was to use an original mathematical model to predict the most accurate locations for LPG sensors in an underground garage for vehicles powered with LPG. First, the three-dimensional geometry of an underground garage under a multi-family building was reconstructed. Next, two types of ventilation, jet and duct, were considered, and different sources of LPG leakage were assumed. Then, the Ansys Fluent software was applied as a solver, and the same initial value of released LPG (5 kg) was assumed. As a simplification, and to avoid the simulation of choked outflow, the emission from a large area was adopted. The results showed stagnation areas for duct ventilation in which gas remained for both the jet and duct ventilation. Moreover, it was observed that the analyzed gas would gather in the depressions of the ground in the underground garage, for example in drain grates, which may create a hazardous zone for the users of the facility. Additionally, it was observed that for jet ventilation, turbulence appearance sometimes generated differentiated gas in an undesirable direction. The simulation also showed that for blowing ventilation around the garage, and for higher LPG leakage, a higher cloud of gas that increased probability of ignition and LPG explosion was formed. Meanwhile, for jet ventilation, a very low concentration of LPG in the garage was noticed. After 35 s, LPG concentration was lower than the upper explosive limit. Therefore, during the LPG leakage in an underground garage, jet ventilation was more efficient in decreasing LPG gas to the non-explosive values.


Author(s):  

With the Chusovckoy water intake of the city of Perm as a study case specific features of organization of selective water abstraction from water bodies in the conditions of essential vertical heterogeneity of limiting contamination ingredients content have been considered. The watercourse vertical stratification is caused by the Chusovaya and Sylva rivers (with substantially different hydro/chemical regime) confluence in direct vicinity of the water intake. Simulation computing experiments in three-dimensional statement with the use of ANSYS Fluent software have been carried out to assess the bottom barriers’ effectiveness in arrangement of selective water abstraction.


2017 ◽  
Vol 3 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Zbigniew Czyż ◽  
Ibrahim Ilhan ◽  
Mert Akcay ◽  
Jacek Czarnigowski

The paper presents the results of the simulation of the air flow around the gyroplane without the influence of the rotor and pusher propellers. Three-dimensional calculations were performed using ANSYS Fluent software. Based on the calculations, the values of the drag force and the lift force on each component of the rotorcraft were determined. Based on the results obtained, the effect of angle of attack on the aerodynamic forces was obtained.


2022 ◽  
Vol 16 (2) ◽  
pp. 29-40
Author(s):  
S. A. Akinin ◽  
A. V. Starov

The results of computational and experimental studies of a model of a hypersonic convergent air intake are presented. Experimental studies were carried out in a hot-shot wind tunnel IT-302M SB RAS at a Mach number M = 5.7 and an angle of attack α = 4 °. Numerical modeling was carried out in a three-dimensional setting in the ANSYS Fluent software package. The calculations were carried out in 4 versions using different turbulence models: k-ɛ standard, RNG k-ɛ, k-ɷ standard and k-ɷ SST. The features of the flow structure are established. The pressure distributions on the compression surfaces and in the air intake channel are obtained. The separated flow at the entrance of the inner channel was studied. It was found that the use of various turbulence models has a significant effect on the size and position of separation. The best agreement between the calculated and experimental data on the level of static pressure was shown by the variant with the k-ɛ standard turbulence model.


Author(s):  
M. A. Abd Halim ◽  
N. A. R. Nik Mohd ◽  
M. N. Mohd Nasir ◽  
M. N. Dahalan

Induction system or also known as the breathing system is a sub-component of the internal combustion system that supplies clean air for the combustion process. A good design of the induction system would be able to supply the air with adequate pressure, temperature and density for the combustion process to optimizing the engine performance. The induction system has an internal flow problem with a geometry that has rapid expansion or diverging and converging sections that may lead to sudden acceleration and deceleration of flow, flow separation and cause excessive turbulent fluctuation in the system. The aerodynamic performance of these induction systems influences the pressure drop effect and thus the engine performance. Therefore, in this work, the aerodynamics of motorcycle induction systems is to be investigated for a range of Cubic Feet per Minute (CFM). A three-dimensional simulation of the flow inside a generic 4-stroke motorcycle airbox were done using Reynolds-Averaged Navier Stokes (RANS) Computational Fluid Dynamics (CFD) solver in ANSYS Fluent version 11. The simulation results are validated by an experimental study performed using a flow bench. The study shows that the difference of the validation is 1.54% in average at the total pressure outlet. A potential improvement to the system have been observed and can be done to suit motorsports applications.


2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


Author(s):  
Zhonghua Sun

Three-dimensional (3D) printing is increasingly used in medical applications with most of the studies focusing on its applications in medical education and training, pre-surgical planning and simulation, and doctor-patient communication. An emerging area of utilising 3D printed models lies in the development of cardiac computed tomography (CT) protocols for visualisation and detection of cardiovascular disease. Specifically, 3D printed heart and cardiovascular models have shown potential value in the evaluation of coronary plaques and coronary stents, aortic diseases and detection of pulmonary embolism. This review article provides an overview of the clinical value of 3D printed models in these areas with regard to the development of optimal CT scanning protocols for both diagnostic evaluation of cardiovascular disease and reduction of radiation dose. The expected outcomes are to encourage further research towards this direction.


Sign in / Sign up

Export Citation Format

Share Document