scholarly journals Three dimensional cyclonic turbulent flow structures at various geometries, inlet-outlet orientations and operating conditions

2018 ◽  
Vol 12 (4) ◽  
pp. 4300-4328
Author(s):  
Pasymi Pasymi ◽  
Y. W. Budhi ◽  
A. Irawan ◽  
Y. Bindar

Flow structure inside a chamber greatly determines the process performances. Therefore, the flow structure inside a chamber are often constructed in such a way as an effort to obtain equipment performances in accordance with the expectations. This study explored flow structure inside several chamber geometries and operating conditions. Three types of chamber, namely; GTC, DTC and TJC were set as the investigated chambers. The Computational Fluid Dynamics technique, supported by some experimental data from the literature, is used as an investigation method. The RANS based models, under Ansys-Fluent software were used in this numerical investigation. Simulation results revealed that the flow structures of GTC and DTC are predominantly created by spiral and vortex patterns. The vortex stabilizer diameter in the GTC affects the vortex pattern, velocity profile and pressure drop. The flow structure of DTC presents the most complex behavior. The flow structure inside TJC, in the case of unconfined outlet boundary, is characterized by the helical and wavy jet pattern. This structure is determined by the initial tangential intensity (IIT) and the inlet aspect ratio (RIA). The structures of vortex, helical, and wavy axial flow are properly constructed and visualized in this paper. There is no a turbulence model which is always superior to the other models, consistently. The standard k-ε model exhibits the realistic and robust performances among  all of investigatied cases.

Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays ◽  
Zhang Jun

This study describes the aerodynamic efficiency of a forebody–inlet configuration and computational investigation of a drone system, capable of sustainable supersonic cruising at Mach 1.60. Because the whole drone configuration is formed around the induction system and the design is highly interrelated to the flow structure of forebody and inlet efficiency, analysis of this section and understanding its flow pattern is necessary before any progress in design phases. The compression surface is designed analytically using oblique shock patterns, which results in a low drag forebody. To study the concept, two inlet–forebody geometries are considered for Computational Fluid Dynamic simulation using ANSYS Fluent code. The supersonic and subsonic performance, effects of angle of attack, sideslip, and duct geometries on the propulsive efficiency of the concept are studied by solving the three-dimensional Navier–Stokes equations in structured cell domains. Comparing the results with the available data from other sources indicates that the aerodynamic efficiency of the concept is acceptable at supersonic and transonic regimes.


2018 ◽  
Vol 56 (3) ◽  
pp. 370
Author(s):  
Nguyen Van Thang ◽  
Ha Tien Vinh ◽  
Bui Dinh Tri ◽  
Nguyen Duy Trong

This article carries out the numerical simulation of airflow over three dimensional car models using ANSYS Fluent software. The calculations have been performed by using realizable k-e turbulence model. The external airflow field of the simplified BMV M6 model with or without a wing is simulated. Several aerodynamic characteristics such as pressure distribution, velocity contours, velocity vectors, streamlines, turbulence kinetic energy and turbulence dissipation energy are analyzed in this study. The aerodynamic forces acting on the car model is calculated and compared with other authors.


1996 ◽  
Vol 118 (4) ◽  
pp. 835-843 ◽  
Author(s):  
B. V. Marathe ◽  
B. Lakshminarayana ◽  
Y. Dong

The objective of this investigation is to understand the nature of the complex flow field inside each element of the torque converter through a systematic experimental and numerical investigation of the flow field. A miniature five-hole probe was used to acquire the data at the exit of the stator at several operating conditions. The flow field is found to be highly three dimensional with substantial flow deviations, and secondary flow at the exit of the stator. The secondary flow structure, caused by the upstream radial variation of the through flow, induces flow overturning near the core. Flow separation near the shell causes flow underturning in this region. The rate of decay of stator wake is found to be slower than that observed in the wakes of axial flow turbine nozzles. The flow predictions by a Navier–Stokes code are in good agreement with the pressure and the flow field measured at the exit of the stator at the design and the off-design conditions.


Author(s):  
Ralf E. Walraevens ◽  
Heinz E. Gallus ◽  
Alexander R. Jung ◽  
Jürgen F. Mayer ◽  
Heinz Stetter

A study of the unsteady flow in an axial flow turbine stage with a second stator blade row is presented. The low aspect ratio blades give way to a highly three-dimensional flow which is dominated by secondary flow structures. Detailed steady and unsteady measurements throughout the machine and unsteady flow simulations which include all blade rows have been carried out. The presented results focus on the second stator flow. Secondary flow structures and their origins are identified and tracked on their way through the passage. The results of the time-dependent secondary velocity vectors as well as flow angles and Mach number distributions as perturbation from the time-mean flow field are shown in cross-flow sections and azimuthal cuts throughout the domain of the second stator. At each location the experimental and numerical results are compared and discussed. A good overall agreement in the time-dependent flow behaviour as well as in the secondary flow structures is stated.


Author(s):  
Kai Wang ◽  
Houlin Liu ◽  
Shouqi Yuan ◽  
Minggao Tan ◽  
Yong Wang ◽  
...  

A double blades pump is widely used in sewage treatment industry, while at present the research on the internal flow characteristics of the double blades pump is very few. So, the CFD technology and the stereo PIV test technique are applied to study the inner flow in a double blades pump whose specific speed is 110.9. The commercial code FLUENT is used to simulate the inner flow in the double blades pump at 0.6Qd, 0.8Qd, 1.0Qd, 1.2Qd and 1.4Qd. The RNG k-ε turbulence model and SIMPLEC algorithm are used in FLUENT. According to the results of the three-dimensional steady numerical simulation, the distributions of velocity field in the impeller are obtained at the five different operating conditions. The analysis of the numerical simulation results shows that there is an obvious vortex in the impeller passage at off-design conditions. But the number, location and area of the vortex are different from each operation condition. In order to validate CFD simulation results, the stereo PIV is used to test the absolute velocity distribution in the double blades pump at Jiangsu University. The distributions of three-dimensional absolute velocity field at the above five different operating conditions are obtained by the PIV test, and the measured results are compared with the CFD simulation results. The comparison indicates that there are vortexes in impeller passages of the double blades pump under the five operating conditions. But as to the area of the vortex and the relative velocity values of the vortex core, there are some differences between the experiment results and the numerical simulation results. The research work can be applied to instruct the hydraulic design of double blades pumps.


1997 ◽  
Vol 3 (4) ◽  
pp. 269-276 ◽  
Author(s):  
Tsutomu Adachi ◽  
Yutaka Yamashita ◽  
Kennichiro Yasuhara ◽  
Tatsuo Kawai

Three dimensional steady and unsteady velocity distributions in the axial flow fan were measured using a hot wire probe for various operational conditions, various rotational speeds and various measuring positions. For measuring the velocity distributions in the blade passage, a specially designed and manufactured hot wire traversing apparatus was used. Steady velocity distributions, turning angles, effects of incident to the cascade, flow leakage through the tip clearance and effects of the flow separation show the flow phenomena through the blade passages. Unsteady velocity distributions show time dependent procedures of the wake flowing through the moving blade passage. Considering these results of measurements, the effects of the upstream stationary blade and the effects of Reynolds number on the flow were considered.


2001 ◽  
Vol 21 (1Supplement) ◽  
pp. 117-120
Author(s):  
Yu-Cheong Im ◽  
Tetsuo Saga ◽  
Toshio Kobayashi ◽  
Takahiro Ito

2018 ◽  
Vol 24 (3) ◽  
pp. 29
Author(s):  
Mustafa T. Mustafa ◽  
Ayad T. Mustafa

Solar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation results demonstrated that at same insolation; airflow, ground and air temperatures increase when the collector radius decreases towards the collector center. The ground temperature and air velocity increase, while airflow temperature decreases when the inclination angle increases from 0° to 20° due to changing in airflow movement. More decreasing in airflow temperature has been occurred when the inlet height increases from 0.1m to 0.25m. The simulation results were validated by comparing with the experimental data. In conclusions, the obtained results showed the capability of producing warm airflow to generate electricity in Baghdad city.    


Author(s):  
Cesar Martin Venier ◽  
Andrés Reyes Urrutia ◽  
Juan Pablo Capossio ◽  
Jan Baeyens ◽  
Germán Mazza

Purpose The purpose of this study is to assess the performance of ANSYS Fluent® and OpenFOAM®, at their current state of development, to study the relevant bubbling fluidized bed (BFB) characteristics with Geldart A, B and D particles. Design/methodology/approach For typical Geldart B and D particles, both a three-dimensional cylindrical and a pseudo-two-dimensional arrangement were used to measure the bed pressure drop and solids volume fraction, the latter by digital image analysis techniques. For a typical Geldart A particle, specifically to examine bubbling and slugging phenomena, a 2 m high three-dimensional cylindrical arrangement of small internal diameter was used. The hydrodynamics of the experimentally investigated BFB cases were also simulated for identical geometries and operating conditions using OpenFOAM® v6.0 and ANSYS Fluent® v19.2 at identical mesh and numerical setups. Findings The comparison between experimental and simulated results showed that both ANSYS Fluent® and OpenFOAM® provide a fair qualitative prediction of the bubble sizes and solids fraction for freely-bubbling Geldart B and D particles. For Geldart A particles, operated in a slugging mode, the qualitative predictions are again quite fair, but numerical values of relevant slug characteristics (length, velocity and frequency) slightly favor the use of OpenFOAM®, despite some deviations of predicted slug velocities. Originality/value A useful comparison of computational fluid dynamics (CFD) software performance for different fluidized regimes is presented. The results are discussed and recommendations are formulated for the selection of the CFD software and models involved.


2018 ◽  
Vol 15 (4) ◽  
pp. 538-546
Author(s):  
N. M. Filkin ◽  
A. M. Tatarkin

Introduction. This article deals with the problem of moisture condensation inside the cabin of the technological electric transport vehicle. The hypothesis of using the forced air ventilation in the cabin is substantiated, by which such problem could be solved.Materials and methods. The article describes the application of the ANSYS Fluent Software Package to assess the effect of the location and shape of the ducts on the ventilation process inside the cabin. Accordingly, the key stages of air flow modeling in this program are considered.Results. The main content of the research is to analyze the modeling airflow process in the cabins with a different configuration of inlet and outlet nozzles. Therefore, basing on the analysis of the obtained airflow velocity contours, the conclusion is made about the rational arrangement of the inlet and outlet channels.Discussion and conclusions. The conclusion is made about the necessity of the further research that would refer to creating a three-dimensional model of the cabin. The results of the research as well as resolutions are taken into account.


Sign in / Sign up

Export Citation Format

Share Document