NUMERICAL STUDIES OF AIR FLOWS IN THE CABIN OF A UNIFIED MACHINE OF TECHNOLOGICAL ELECTRIC TRANSPORTAIMED AT ELIMINATINGMOISTURE CONDENSATION

Author(s):  
N. M. Fil’kin ◽  
A. M. Tatarkin

This article discusses the process of creating a 3D-model of the cab of a unified machine of technological electric transport, generation of the calculated grid on the basis of the created model. Also, the parameters of the solver (Solution Setup) of the ANSYS Fluent software module for the study of the created model are selected. The main content of the study is the analysis of the results of modeling the airflow in the designed cabin. The analysis showed that the chosen cabin configuration will be able to eliminate the condensation process in critical areas. The conclusion is made about the need for further research, which will be aimed at developing the design of air ducts and used in the design of a unified machine of technological electric transport.

2019 ◽  
Vol 110 ◽  
pp. 01026 ◽  
Author(s):  
Andrey Dmitriev ◽  
Vadim Zinurov ◽  
Dang Vinh ◽  
Oksana Dmitrieva

This paper deals with the removal of moisture from the contaminated transformer oil. Design of a rectangular separator and the results of water-oil emulsion separation are shown in this paper. The influence of different values of the separator height and the distance between the rows of elements on the emulsion separation efficiency was studied. In order to calculate the process of removing the moisture from transformer insulating oil, the multiphase Eulerian-Eulerian model “Volume of Fluid” with the number of phases equal to 2 was applied in ANSYS Fluent software package. K–ε turbulence model was used for the calculations. The results were obtained while solving the nonstationary issue. In the course of numerical simulation, the object of study was the transformer oil T-1500U, containing some water amount. The results of numerical simulation of water-oil emulsion separation in a rectangular separator are shown. In the course of numerical studies, it was found that the use of a rectangular separator in order to remove the moisture from transformer oil allows it to be purified from water by 99.99%, providing that the geometrical dimensions of device are chosen correctly. The use of developed rectangular separator can be an alternative to the use of decanting tanks, various separators and other purification devices, which have extremely low rate of purification of contaminated spent oils. This separator allows purifying the transformer oil from water with a speed of 1-2 m/s while the efficiency is equal to 99.99%.


2018 ◽  
Vol 15 (4) ◽  
pp. 538-546
Author(s):  
N. M. Filkin ◽  
A. M. Tatarkin

Introduction. This article deals with the problem of moisture condensation inside the cabin of the technological electric transport vehicle. The hypothesis of using the forced air ventilation in the cabin is substantiated, by which such problem could be solved.Materials and methods. The article describes the application of the ANSYS Fluent Software Package to assess the effect of the location and shape of the ducts on the ventilation process inside the cabin. Accordingly, the key stages of air flow modeling in this program are considered.Results. The main content of the research is to analyze the modeling airflow process in the cabins with a different configuration of inlet and outlet nozzles. Therefore, basing on the analysis of the obtained airflow velocity contours, the conclusion is made about the rational arrangement of the inlet and outlet channels.Discussion and conclusions. The conclusion is made about the necessity of the further research that would refer to creating a three-dimensional model of the cabin. The results of the research as well as resolutions are taken into account.


Author(s):  
Anpeng He ◽  
Ning Zhang

CFD based design optimization for liquid extraction using cyclone is presented in this paper. The extraction process is liquid extraction from solid particles in turbulent air flows. The solid particles contain a certain amount of liquid, so call wet-particles. The simulations were performed using commercial ANSYS-FLUENT software. The software is an excellent tool for simulating turbulent flows. However, the software does not have the direct capability of simulating this particular liquid-extraction process. External user defined functions and subroutines (UDFs) were developed and incorporated in the software to conduct the simulation for this particular process. Several design configurations were tested to obtain the best extraction performance. Investigations of the physics of the extraction process in turbulent flows were also conducted using the new “hybrid” software tool.


2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


2014 ◽  
Vol 703 ◽  
pp. 425-429
Author(s):  
Jun Fei Wu ◽  
Zhi Li ◽  
Fan Guo Meng ◽  
Ben Liang Yu

Compared with traditional screw pump,all-metal screw pump have more advantages in the oil extraction. In this paper, all-metal single screw pump's geometric model was made by PROE software; then the dynamic mesh technique was applied to mesh the model and constraint condition was applied in the ANSYS-FLUENT software. 3D flow field was numerical analyzed In that software, the impacts of screw speed on volume flow and volumetric efficiency were concluded, the conclusion can offer some valuable guidances to the all-metal single screw pump's design.


2015 ◽  
Author(s):  
Nilima C. Joshi ◽  
Ayaz J. Khan

ost of the flow phenomena important to modern technology involve turbulence. Propellers generally operate in the very complex flow field that may be highly turbulent and spatially non-uniform. Propeller skew is the single most effective design parameter which has significant influence on reducing propeller induced vibration. Up to date applications of propeller skew does not has a specified criteria for any turbulent model. This paper deals with the model which explains the effect of propeller skewness on hydrodynamic performance related to study of turbulent model via mathematical and numerical modeling. The simulation work is carried out using ANSYS-FLUENT software.


2021 ◽  
Author(s):  
Maryam Habibi ◽  
Mohsen Heidary ◽  
Mohammad Mehdi Tavakol ◽  
Goodarz Ahmadi

Abstract In this study, the dispersion and deposition of particles in the respiratory system attached to a mannequin lying down inside a room were investigated numerically. The respiratory system model was prepared by processing the CT scan images of a volunteer and was attached to a mannequin lying in the middle of a room. The flow field around the mannequin and effects of the thermal plume on the particle aspiration by the mannequin model was simulated using the Ansys-Fluent software. The aspiration efficiency of spherical particles in the airway was studied with the Lagrangian particle trajectory analysis, including the turbulence dispersion effects. For validation of numerical simulations, the aspiration efficiency of the particles obtained from the numerical solution was compared with the case of a standing mannequin. The results are presented for two different modes with upward and downward thermal plumes. For the first mode, due to the strong effect of the thermal plume in the upward direction, the aspiration efficiency of midrange particles increases. However, the aspiration efficiency of large micro-particles decreases for the first mode. For the second mode, with the downward thermal plume, the aspiration efficiency of small micro-particles increases significantly.


Author(s):  
Ajit Patki ◽  
Xianchang Li ◽  
Daniel Chen ◽  
Helen Lou ◽  
Vijaya Damodara

Soot emissions (PM 2.5) as well as CO and NOx from industrial flares and other industrial processes or sources pose a substantial risk to human being health and the environment, and now are subject to new and tougher EPA regulations. Flaring is used widely used in many industries to dispose unwanted combustion gases by burning them as a flame. However, flaring produces significant amount of particulate matter in the form of soot, along with other harmful gas emissions. Although many experimental and numerical studies have previously been done on flames burning in a controlled condition, relatively few studies have been conducted with fuel-steam mixture. In practice, air and steam are commonly used to assist the flaring processes — control the smoke and the combustion efficiency. This study aims to investigate soot, CO and NOx emissions of turbulent diffusion methane and propane flame mixed with air or superheated steam. To study such effect numerically, the computational fluid dynamics software ANSYS Fluent 14.5 is used with non-premixed probability density function (PDF) model. The laminar flamelet is generated with automated grid refinement. For the soot generation, the Moss-Brookes soot model with Lee sub-model is considered. The combustion mechanism is developed by the authors’ research group from the combined GRI and USC mechanisms. Two types of fuel, methane and propane, are used. The amount of super-heated steam varied from four percent to twenty percent (4%, 8 %, 12%, 16%, and 20%), and the behavior of the flame is analyzed. For the baseline case, the jet has a diameter of 50.8 mm or 2 inches, and the jet velocity is kept to 1.0 m/s. A co-flow air is supplied at a velocity of 0.2 m/s. The temperature distribution of methane and propane are compared with different contents of steam or air assists. The NOx, Soot and CO yields (kg/kg) varying with steam or air percentages are also presented. The results indicate that the soot yield is dependent on fuel type strongly and the percentage of steam or air affects the soot yield differently as the fuel type varies.


Author(s):  
D. A. Romanyuk ◽  
S. V. Panfilov ◽  
D. S. Gromov

Within the scope of the research work, we have developed the methods and software package for solving the conjugate heat and hydraulic problems based on the classical approach to performing hydraulic calculations and modeling thermal processes by means of the finite volume method in the ANSYS Fluent software package. The developed means allowed us to efficiently calculate the thermal state of complex technical objects. The study gives mathematical formulation of the methods and suggests the results of their approbation and verification


2021 ◽  
Vol 2021 (6) ◽  
pp. 5366-5372
Author(s):  
MARIAN BOJKO ◽  
◽  
LUKAS HERTL ◽  
SYLVA DRABKOVA ◽  
◽  
...  

The twin-screw pump is designed for pumping highly viscous materials in the food industry. Rheological characteristics of materials are important in the specification of design parameters of screw pumps. Analysis of flow in the twin-screw pumps with definition of non-newtonian materials can be made by numerical modelling. CFD generally oriented software ANSYS Fluent and ANSYS Polyflow has been used for modelling. In this study those software’s (ANSYS Fluent and ANSYS Polyflow) were defined for solution of flow in the twin-screw pumps. Results were compared for the same boundary conditions on the inlet and outlet of the 3D model. For definition of the viscosity were used the Nonnewtonian power law. Parameters as consistency coefficient and flow exponent for Nonnewtonian power law were analysed by software ANSYS Fluent and ANSYS Polyflow. Postprocessing form ANSYS Fluent and ANSYS Polyflow were made by contours of field and by graphs.


Sign in / Sign up

Export Citation Format

Share Document