scholarly journals DESIGN PARAMETERS FOR TRANSMISSION SYSTEMS

2022 ◽  
Author(s):  
Dr Jeevanantham S ◽  
Prof L Franklin Arokiya Raj ◽  
Prof Nishanth S

“Design Parameters for Transmission Systems” for the field of Mechanical, Production, Automobile & Mechatronics Engineering. The main purpose of this book is to discover the Design Parameters, thoughts involved in Transmission system which gather the requirements of revised Anna university syllabus in an easy way of understanding. This book is supportive to the Engineering students both under graduate and post graduate.


Author(s):  
CH. CHENGAIAH ◽  
R.V.S. SATYANARAYANA ◽  
G.V. MARUTHESWAR MARUTHESWAR

The power transfer capability of electric transmission lines are usually limited by large signals ability. Economic factors such as the high cost of long lines and revenue from the delivery of additional power gives strong intensive to explore all economically and technically feasible means of raising the stability limit. On the other hand, the development of effective ways to use transmission systems at their maximum thermal capability. Fast progression in the field of power electronics has already started to influence the power industry. This is one direct out come of the concept of FACTS aspects, which has become feasible due to the improvement realized in power electronic devices in principle the FACTS devices should provide fast control of active and reactive power through a transmission line. The UPFC is a member of the FACTS family with very attractive features. This device can independently control many parameters. This device offers an alternative mean to mitigate transmission system oscillations. It is an important question is the selection of the input signals and the adopted control strategy for this device in order to damp power oscillations in an effective and robust manner. The UPFC parameters can be controlled in order to achieve the maximal desire effect in solving first swing stability problem. This problem appears for bulky power transmission systems with long transmission lines. In this paper a MATLAB Simulink Model is considered with UPFC device to evaluate the performance of Electrical Transmission System of 22 kV and 33kV lines. In the simulation study, the UPFC facilitates the real time control and dynamic compensation of AC transmission system. The dynamic simulation is carried out in conjunction with the N-R power flow solution sequence. The updated voltages at each N-R iterative step are interpreted as dynamic variables. The relevant variables are input to the UPFC controllers.



2012 ◽  
Vol 215-216 ◽  
pp. 115-118
Author(s):  
Jia Hong Zheng ◽  
Yu Chun Liu ◽  
Min Li

Today, transmission systems are playing important roles in engineering. For all of the components in them, status of the rolling bearing has been rising. In modern times, people are making great efforts on the optimization of transmission system. At the same time, optimization design of all the internal components was also important. For all the techniques, research to the rolling bearings has become increasingly mature. In this paper, the rolling bearing in growth of box of the 2 MW wind generator was took as the research object. The load coefficient of rolling bearing was been calculated, then the reliability assessment model of the rolling bearing was been made. On the basis of which, the optimization design on the reliability was done.



1994 ◽  
Author(s):  
Anders Hedman

Methods for analysis of general mechanical transmission systems with a hydrodynamic torque converter (HTC) are presented. The methods are adapted for computer calculations. The properties of the HTC must be known, either explicitly as speed and torque characteristics, or implicitly as internal geometry (blade angles, etc.). Linear relationships between the torques and between the speeds of the shafts of the transmission system (except the HTC) are easily formulated. The HTC has coupled, non-linear, relationships for torques and speeds. Different ways of including these non-linear equations are presented. This can be implemented in a computer program. Solving the equation system yields the torque and speed of each shaft of the transmission system. Power losses can be handled.



2019 ◽  
Vol 25 (10) ◽  
pp. 1653-1662 ◽  
Author(s):  
Wei Li ◽  
Jingdong Sun ◽  
Jiapeng Yu

The two-parallel shaft gear transmission system is the most widely used system among the multi-stage gear transmission systems. The dynamic characteristics analysis of the two-parallel shaft gear transmission system is of great significance for nonlinear behavior research and noise control of gear transmission systems. This paper establishes a dynamic model and equations for the two-parallel shaft gear transmission system. According to the solution to the dynamic equations, the effects are studied of parameters such as speed, damping, modulus, and precision on the dynamic characteristics of the system. The results provide the basis for reducing vibration and noise control in multi-stage gear transmission systems.



Author(s):  
C.K. Jung ◽  
J.B. Lee ◽  
J.W. Kang ◽  
Xinheng Wang ◽  
Yong-Hua Song

Sheath current can cause sheath loss and reduce the permissible current of a power cable transmission system. High sheath current is usually caused by mixed cable burying formation, different length between sections, poor connection of the bonding leads, and connection of distribution cable onto transmission systems. This paper analyses the characteristics of sheath circulating current at various conditions and presents a useful method to reduce it in a mixed burying formation system. It can effectively reduce the current by up to 90%. The method is validated by practical measurements and simulations using ATP, and has been implemented in actual systems. In addition, a special equipment is designed to measure and analyze the sheath circulating current. It can measure and analyze nine currents at a same time.



Author(s):  
El-Sayed Aziz ◽  
C. Chassapis

Product development is a process with complicated procedures, which incorporate many aspects of knowledge, experience and teamwork. Specifically, mechanical system design requires an iterative process to determine the desired component design parameters that would satisfy kinematic, performance and manufacturability requirements, which would result in an efficient and reliable operation of speed reduction units. This article describes an approach towards the development of intelligent design support environments for mechanical transmission systems, along with implementation details of a distributed knowledge-based gearing design and manufacturing system that is deployed over the Internet. The system embodies the various tasks of the design process, with modules that address: performance evaluation, process optimization, manufacturability analysis, and provides reasoning and decision-making capabilities for reducing the time between gear tooth creation, detailed design and final production. This methodology is highly desirable in that it is able to simulate real working conditions, evaluate and optimize the design effectively, prevent designers from time-consuming iterations and reduce long and expensive test phases. In an application example relating to process design of a forged gearing system, once a successful power rating is achieved within the design environment through FEA based techniques, the system automatically feeds input parameters into the manufacturing module which carries out all process design and planning stages. Estimation of the number of preforming stages, generation of detail die drawings, and forging load and energy requirements are calculated based on available material design databases, knowledge-based rules and feature-level calculations. Utilization of the World Wide Web, as a medium for the implementation of gear design and its agile manufacturing over the Internet is also being demonstrated. A combination of HTML, JavaScript, VRML, CGI Script and C++ based procedures is used to bring this capability to users distributed anywhere in the world. With the above developments, the problems of experience and expertise for the designers are overcome and unexpected design iterations that cause wastage of engineering time and effort, are avoided. The environment can be easily enhanced with other types of gearing systems.



2018 ◽  
pp. 17-20
Author(s):  
L. Lyakhovetsky

The method of estimation of interference noise that arises in transmission systems with orthogonal harmonic signals due to linear distortions of signals in the telecommunication channel is proposed. The method can be used both for simulation of telecommunication systems, and for the construction of measuring devices with the function of estimation of interference noise based on the results of measuring the characteristics of the telecommunication channel.The results of estimation of interference noise for ADSL2 + subscriber access transmission system are presented.



2021 ◽  
Author(s):  
Yu Peng

Power systems worldwide are embracing diverse supply mixes that incorporate a significant portion from renewables such as wind and solar energy. Wind energy is characterised by reliable equipment, but with an output that is uncertain and intermittent. In addition to equipment unreliability (system N-1 criterion), output uncertainties of wind electric generators (WEGs) introduce risk into daily power system schedules. This risk from the uncertainty of output from WEGs can be quantified as expected energy not served (EENS). Furthermore, the introduction of new forms of generation changes the methods of operating transmission systems, further necessitating the use of transmission security constraints in power systems optimization algorithms. This dissertation explores new approaches to stochastically model the real power output of WEGs and to efficiently tackle AC transmission system security constraints for power system optimization algorithms such as optimal power flow (OPF) and day-ahead unit commitment (UC). Usually, normal probabilistic distribution is used to model uncertainty in short-term wind power output forecast and compute EENS. In this dissertation, a new triangular approximate distribution (TAD) model is proposed which is a linear approximation of normal probabilistic distribution to model short-term wind power output forecast and compute EENS. This TAD model is used to formulate a practical risk-constrained fast OPF for transmission systems to simultaneously minimize: 1) risk due to uncertainties in power output from WEGs, and 2) the total operating cost. The integration of new energy resources causes transmission systems to operate in new, challenging, and often unforeseen operating states. Thus, it is imperative that UC algorithms incorporate AC transmission system security constraints and stochastically model output of WEGs to ensure reliable operation of transmission systems. As a first step, a successive mixed integer linear programming (MILP) method is proposed for AC transmission system security constrained unit commitment (SCUC) challenge. Fuzzy sets theory is used to model infeasible constraints in this MILP formulation. As a next step, the TAD model of WEGs is integrated into the MILP formulation of SCUC to create a fast security and risk constrained probabilistic UC algorithm. The two UC algorithms are tested on large systems.



2019 ◽  
Vol 26 (4) ◽  
pp. 21-28
Author(s):  
Andrzej Bieniek ◽  
Jarosław Mamala ◽  
Krzysztof Prażnowski ◽  
Mariusz Graba

AbstractThe study concentrated on slip phenomenon occurring at hydrokinetic converter in passenger car transmission system. Optimization of modern automatic transmission systems aims, on the one hand, to further increase the comfort of use, and on the other hand to improve the efficiency and reliability operation of individual components, in such a way as to ultimately result in lowering fuel consumption and also harmful emissions. One of the important factors affecting the mentioned transmissions properties as a whole system is the slip phenomenon occurring between the pump and the hydrokinetic converter turbine. The study presents the results of research on ZF 4HP20 and Fuji Hyper M6 gearboxes operating in vehicle transmission systems. The tests were carried out using the MAHA MSR 500 chassis dynamometer during driving at chosen test cycles. The research covered the transmission systems operating according to selected control algorithms affecting not only the gear shifting strategy but also the operation of the lock up clutch causing the transmissions slip values. As shown by the conducted research, the algorithm controlling the operation of the torque converter can have a significant influence on their operating indexes. The conducted analyses indicate the possibilities of improving the transmission operating indexes, especially in urban driving cycles.



Author(s):  
Martin Boros ◽  
Matej Kucera ◽  
Andrej Velas ◽  
Jan Valouch

In the current digital era, information is a basis of some systems. In the area of information, great emphasis is also placed on its security and possibilities of use. The basis of the alarm transmission system is information about the protected object, which is transmitted to the remote center of the alarm transmission system. Operators of alarm transmission system centers should be obliged to carry out regular testing of the availability of individual transmission networks. At present, there is a trend that those tests are carried out by telephone calls between the two technicians and the time of transmission of information is measured utilizing a stopwatch. To automate this process, a test facility has been created that can simulate and record the intrusion of a protected object. Initial experimental tests have ascertained whether it is possible, with the test equipment, to generate the data necessary to assess the reliability of alarm transmission systems.



Sign in / Sign up

Export Citation Format

Share Document