scholarly journals Search for new superconducting compounds with a critical transition temperature Tc close to room temperature under pressure

A new chemical composition of superconducting compounds formed on the basis of elements of the fifth group (semimetals) is proposed within the framework of the quantum Bardin-Cooper-Shriffer quantum theory of superconductivity (BCS-theory) using physical chemistry methods for analyzing equilibrium crystal structures. These compounds satisfy all the conditions for transition to the superconducting state at temperatures close to room temperature and a pressure of ≈107 Pa. As initial chemical elements from which superconducting compounds can be synthesized under pressure, in addition to hydrides, substances that allow the "collectivization" of electrons can be used. The most suitable substances in this sense are the elements of the fifth group of the periodic system or the so-called semimetals, which include Bi, Sb, As, graphite, etc. These elements, by their electrical properties, occupy an intermediate position between metals and semiconductors. They are characterized by a slight overlap of the valence and conduction zones, which leads, on one hand, to the fact that they remain good conductors of electricity up to absolute zero temperature, and on the other hand, they have a significantly lower carrier density compared to metals charge. Moreover, in these substances in a wide temperature range at atmospheric pressure, the stability of the solid phase is maintained and, very importantly, a partial “collectivization” of valence electrons inherent in metals is already realized in the initial state. It is shown that, under the action of pressure p``≈107Pa, semimetals can turn into metals characterized by a specific energy spectrum of electrons. A change in the semimetals structure and in parameters of the electronic subsystem energy spectrum is accompanied by an increase in the electron pairing constant and by the density of electronic states at the Fermi level. In turn, an increase in these parameters makes it possible to transfer semimetals to the superconducting state at temperature ≈300К.

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Alice C. Poirier ◽  
John S. Waterhouse ◽  
Jacob C. Dunn ◽  
Andrew C. Smith

AbstractA common recommendation in the field of animal chemosignaling is to store and transport scent samples frozen, since they are likely to change with time and degrade due to bacterial activity inside the sample containers and the loss of the most volatile compounds. However, we still ignore the exact pattern of change or degradation for these types of samples. Here we experimentally tested the stability of primate scent samples during analytical procedures. For this purpose, we used swabs of naturally deposited glandular secretions from captive tamarins (Neotropical primates) analyzed by headspace gas chromatography-mass spectrometry. We successively extracted the samples by solid-phase microextraction, while controlling for the delay between extractions, and compared the number of compounds detected in the samples under each condition. We found that compounds were lost and transformed over time inside the sample vials. Such natural decay of scent signals is likely to contribute to the long term information transmitted. We found no evidence that long delays at room temperature affected sample chemical composition more than short delays. Nonetheless, we showed that repeated extraction of a sample increased the loss of compounds. The changes in sample chemical composition observed over time in this experiment support standard recommendation to avoid storing samples for long periods at room temperature and to extract each sample only once, in order to ensure optimum results.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3636 ◽  
Author(s):  
Matteo Moretti ◽  
Francesca Freni ◽  
Beatrice Valentini ◽  
Claudia Vignali ◽  
Angelo Groppi ◽  
...  

An LC-MS/MS method for the identification and quantification of antidepressants and antipsychotics was developed on dried blood spots (DBSs). Moreover, analyte stability on DBSs within a 3-month period was monitored. Aliquots of 85 µL of blood from autopsy cases were pipetted onto DBS cards, which were dried and stored at room temperature. DBSs were analyzed in triplicate immediately, within the following 3 weeks, and after 3 months. For each analysis, a whole blood stain was extracted in phosphate buffer and purified using Solid Phase Extraction (SPE) cartridges in order to avoid matrix effects and injected in the LC-MS/MS system. Thirty-nine molecules were screened. Limits of detection (LODs) ranged between 0.1 and 3.2 ng/mL (g) and 0.1 and 5.2 ng/mL (g) for antidepressants and antipsychotics, respectively. Limits of quantification (LOQs) varied from 5 to 10.0 ng/mL for both. Sixteen cases among the 60 analyzed resulted positive for 17 different analytes; for 14 of these the method was fully validated. A general good agreement between the concentrations on DBSs and those measured in conventional blood samples (collected concurrently and stored at −20 °C) was observed. The degradation/enhancement percentage for most of the substances was lower than 20% within the 3-month period. Our results, obtained from real post-mortem cases, suggest that DBSs can be used for routine sample storage.


Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


1961 ◽  
Vol 06 (03) ◽  
pp. 435-444 ◽  
Author(s):  
Ricardo H. Landaburu ◽  
Walter H. Seegers

SummaryAn attempt was made to obtain Ac-globulin from bovine plasma. The concentrates contain mostly protein, and phosphorus is also present. The stability characteristics vary from one preparation to another, but in general there was no loss before 1 month in a deep freeze or before 1 week in an icebox, or before 5 hours at room temperature. Reducing agents destroy the activity rapidly. S-acetylmercaptosuccinic anhydride is an effective stabilizing agent. Greatest stability was at pH 6.0.In the purification bovine plasma is adsorbed with barium carbonate and diluted 6-fold with water. Protein is removed at pH 6.0 and the Ac-globulin is precipitated at pH 5.0. Rivanol and alcohol fractionation is followed by chromatography on Amberlite IRC-50 or DEAE-cellulose. The final product is obtained by isoelectric precipitation.


2020 ◽  
Author(s):  
Katsuya Maruyama ◽  
Takashi Ishiyama ◽  
Yohei Seki ◽  
Kounosuke Oisaki ◽  
Motomu Kanai

A novel Tyr-selective protein bioconjugation using the water-soluble persistent iminoxyl radical is described. The conjugation proceeded with high Tyr-selectivity and short reaction time under biocompatible conditions (room temperature in buffered media under air). The stability of the conjugates was tunable depending on the steric hindrance of iminoxyl. The presence of sodium ascorbate and/or light irradiation promoted traceless deconjugation, restoring the native Tyr structure. The method is applied to the synthesis of a protein-dye conjugate and further derivatization to azobenzene-modified peptides.


2003 ◽  
Vol 3 ◽  
pp. 266-270
Author(s):  
B.H. Khudjuyerov ◽  
I.A. Chuliev

The problem of the stability of a two-phase flow is considered. The solution of the stability equations is performed by the spectral method using polynomials of Chebyshev. A decrease in the stability region gas flow with the addition of particles of the solid phase. The analysis influence on the stability characteristic of Stokes and Archimedes forces.


1987 ◽  
Vol 52 (5) ◽  
pp. 1356-1361
Author(s):  
S. Abdel Rahman ◽  
M. Elsafty ◽  
A. Hattaba

The conformation of elastin-like peptides Boc-Ala-Pro-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Ala-Pro-Gly-Val-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Gly-Val-Ala-Pro-Gly-Val-Gly-Val-APEGM were examined in solution using circular dichroism at 30 °C, 50 °C, and 70 °C and in solid state by IR at room temperature. The studies show that the β-turn is a significant conformational feature for peptides under investigation in solution at 30 °C and 50 °C, but at 70 °C the tetra, hexa, and decapeptides show the CD feature characteristic of the β-structure while the dodecapeptide spectra show the presence of β-turn which indicates the stability of the β-turn at this chain length. The IR spectra show that in the solid state at room temperature all investigated peptides assume essentially a β-turn except the tetrapeptide which present evidence of antiparallel β-structure. The β-turn contribution in the IR spectra increases with the increase of the chain length of the peptide.


1956 ◽  
Vol 2 (3) ◽  
pp. 145-159 ◽  
Author(s):  
Joseph T Anderson ◽  
Ancel Keys

Abstract 1. Methods are described for the separation, by paper electrophoresis and by cold ethanol, of α- and β-lipoproteins in 0.1 ml. of serum, with subsequent analysis of cholesterol in the separated portions. 2. It is shown that both methods of separation yield separated fractions containing substantially the same amounts of cholesterol. 3. Detailed data are given on the errors of measurement for total cholesterol and for cholesterol in the separated lipoprotein fractions. 4. Studies are reported on the stability of cholesterol in stored serum and on paper electrophoresis strips. It is shown that simple drying on filter paper causes no change in cholesterol content and yields a product that is stable for many weeks at ordinary room temperature. 5. The sources of variability in human serum cholesterol values are examined and it is shown that spontaneous intraindividual variability is a much greater source of error than the errors of measurement with these methods.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Jean-Philippe Sinnes ◽  
Ulrike Bauder-Wüst ◽  
Martin Schäfer ◽  
Euy Sung Moon ◽  
Klaus Kopka ◽  
...  

Abstract Background The AAZTA chelator and in particular its bifunctional derivative AAZTA5 was recently investigated to demonstrate unique capabilities to complex diagnostic and therapeutic trivalent radiometals under mild conditions. This study presents a comparison of 68Ga, 44Sc and 177Lu-labeled AAZTA5-PSMA-617 with DOTA-PSMA-617 analogues. We evaluated the radiolabeling characteristics, in vitro stability of the radiolabeled compounds and evaluated their binding affinity and internalization behavior on LNCaP tumor cells in direct comparison to the radiolabeled DOTA-conjugated PSMA-617 analogs. Results AAZTA5 was synthesized in a five-step synthesis and coupled to the PSMA-617 backbone on solid phase. Radiochemical evaluation of AAZTA5-PSMA-617 with 68Ga, 44Sc and 177Lu achieved quantitative radiolabeling of > 99% after less than 5 min at room temperature. Stabilities against human serum, PBS buffer and EDTA and DTPA solutions were analyzed. While there was a small degradation of the 68Ga complex over 2 h in human serum, PBS and EDTA/DTPA, the 44Sc and 177Lu complexes were stable at 2 h and remained stable over 8 h and 1 day. For all three compounds, i.e. [natGa]Ga-AAZTA5-PSMA-617, [natSc]Sc-AAZTA5-PSMA-617 and [natLu]Lu-AAZTA5-PSMA-617, in vitro studies on PSMA-positive LNCaP cells were performed in direct comparison to radiolabeled DOTA-PSMA-617 yielding the corresponding inhibition constants (Ki). Ki values were in the range of 8–31 nM values which correspond with those of [natGa]Ga-DOTA-PSMA-617, [natSc]Sc-DOTA-PSMA-617 and [natLu]Lu-DOTA-PSMA-617, i.e. 5–7 nM, respectively. Internalization studies demonstrated cellular membrane to internalization ratios for the radiolabeled 68Ga, 44Sc and 177Lu-AAZTA5-PSMA-617 tracers (13–20%IA/106 cells) in the same range as the ones of the three radiolabeled DOTA-PSMA-617 tracers (17–20%IA/106 cells) in the same assay. Conclusions The AAZTA5-PSMA-617 structure proved fast and quantitative radiolabeling with all three radiometal complexes at room temperature, excellent stability with 44Sc, very high stability with 177Lu and medium stability with 68Ga in human serum, PBS and EDTA/DTPA solutions. All three AAZTA5-PSMA-617 tracers showed binding affinities and internalization ratios in LNCaP cells comparable with that of radiolabeled DOTA-PSMA-617 analogues. Therefore, the exchange of the chelator DOTA with AAZTA5 within the PSMA-617 binding motif has no negative influence on in vitro LNCaP cell binding characteristics. In combination with the faster and milder radiolabeling features, AAZTA5-PSMA-617 thus demonstrates promising potential for in vivo application for theranostics of prostate cancer.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ramanshu P. Singh ◽  
Shakti Yadav ◽  
Giridhar Mishra ◽  
Devraj Singh

Abstract The elastic and ultrasonic properties have been evaluated at room temperature between the pressure 0.6 and 10.4 GPa for hexagonal closed packed (hcp) hafnium (Hf) metal. The Lennard-Jones potential model has been used to compute the second and third order elastic constants for Hf. The elastic constants have been utilized to calculate the mechanical constants such as Young’s modulus, bulk modulus, shear modulus, Poisson’s ratio, and Zener anisotropy factor for finding the stability and durability of hcp hafnium metal within the chosen pressure range. The second order elastic constants were also used to compute the ultrasonic velocities along unique axis at different angles for the given pressure range. Further thermophysical properties such as specific heat per unit volume and energy density have been estimated at different pressures. Additionally, ultrasonic Grüneisen parameters and acoustic coupling constants have been found out at room temperature. Finally, the ultrasonic attenuation due to phonon–phonon interaction and thermoelastic mechanisms has been investigated for the chosen hafnium metal. The obtained results have been discussed in correlation with available findings for similar types of hcp metals.


Sign in / Sign up

Export Citation Format

Share Document