Analysis Of Concrete Tunnel Frameworks Subject To Fault Removal

Think India ◽  
2019 ◽  
Vol 22 (3) ◽  
pp. 204-211
Author(s):  
Geddam Teja ◽  
A.P.Nagendra Babu

An earthquake fault rupture generates two types of ground motion: permanent quasi-static dislocations and dynamic oscillations, characterized by strong pulses. This study investigates tunnel’s response to two different conditions using a 2D finite element program; the first one has a static dislocation corresponding to different earthquake magnitudes, while the second combines near-field seismic motions with three specific peak ground accelerations along with permanent dislocations. The impulsive ground motions affect the lining response further to other influential factors such as fault type and dip angle, making changes in sectional forces, displacement, and shear distortion of the lining. Moreover, pulse intensity, period, and frequency content are effective characteristics of impulsive motions that change in final response of the lining, subjected to subsequent static dislocations. Based on the second condition, at low PGAs, the pulse type is more effective to final response of the lining, due to forward and backward momentum specifications in impulsive motions. For earthquakes with high PGA and larger values in nearfield parameters, both the pulse type and period are effective. The tunnel displacement increases at PGAs as large as 0.7 and 1g, unlike the low PGA as large as 0.35g, because of increasing soil stress and plastic strain, respectively.

2006 ◽  
Vol 113 ◽  
pp. 334-338
Author(s):  
Z. Dreija ◽  
O. Liniņš ◽  
Fr. Sudnieks ◽  
N. Mozga

The present work deals with the computation of surface stresses and deformation in the presence of friction. The evaluation of the elastic-plastic contact is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. Several factors of sliding friction model are discussed: surface roughness, mechanical properties and contact load and areas that have strong effect on the friction force. The critical interference that marks the transition from elastic to elastic- plastic and plastic deformation is found out and its connection with plasticity index. A finite element program for determination contact analysis of the assembled details and due to details of deformation that arose a normal and tangencial stress is used.


2021 ◽  
Vol 37 ◽  
pp. 205-215
Author(s):  
Heng Chen ◽  
Hongmei Cheng ◽  
Aibin Xu ◽  
Yi Xue ◽  
Weihong Peng

ABSTRACT The fracture field of coal and rock mass is the main channel for gas migration and accumulation. Exploring the evolution law of fracture field of coal and rock mass under the condition of drilling and slitting construction has important theoretical significance for guiding efficient gas drainage. The generation and evolution process of coal and rock fissures is also the development and accumulation process of its damage. Therefore, based on damage mechanics and finite element theory, the mathematical model is established. The damage variable of coal mass is defined by effective strain, the elastoplastic damage constitutive equation is established and the secondary development of finite element program is completed by FORTRAN language. Using this program, the numerical simulation of drilling and slitting construction of the 15-14120 mining face of Pingdingshan No. 8 Mine is carried out, and the effects of different single borehole diameters, different kerf widths and different kerf heights on the distribution area of surrounding coal fracture field and the degree of damage are studied quantitatively. These provide a theoretical basis for the reasonable determination of the slitting and drilling arrangement parameters at the engineering site.


2013 ◽  
Vol 631-632 ◽  
pp. 518-523 ◽  
Author(s):  
Xiang Li ◽  
Min You

Owing to the lack of a good theory method to obtain the accurate equivalent elastic constants of hexagon honeycomb sandwich structure’s core, the paper analyzed mechanics performance of honeycomb sandwich structure’s core and deduced equivalent elastic constants of hexagon honeycomb sandwich structure’s core considering the wall plate expansion deformation’s effect of hexagonal cell. And also a typical satellite sandwich structure was chose as an application to analyze. The commercial finite element program ANSYS was employed to evaluate the mechanics property of hexagon honeycomb core. Numerical simulation analysis and theoretical calculation results show the formulas of equivalent elastic constants is correct and also research results of the paper provide theory basis for satellite cellular sandwich structure optimization design.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


2009 ◽  
Vol 65 ◽  
pp. 19-31
Author(s):  
Ruben Cuamatzi-Melendez ◽  
J.R. Yates

Little work has been published concerning the transferability of Gurson’s ductile damage model parameters in specimens tested at different strain rates and in the rolling direction of a Grade A ship plate steel. In order to investigate the transferability of the damage model parameters of Gurson’s model, tensile specimens with different constraint level and impact Charpy specimens were simulated to investigate the effect of the strain rate on the damage model parameters of Gurson model. The simulations were performed with the finite element program ABAQUS Explicit [1]. ABAQUS Explicit is ideally suited for the solution of complex nonlinear dynamic and quasi–static problems [2], especially those involving impact and other highly discontinuous events. ABAQUS Explicit supports not only stress–displacement analyses but also fully coupled transient dynamic temperature, displacement, acoustic and coupled acoustic–structural analyses. This makes the program very suitable for modelling fracture initiation and propagation. In ABAQUS Explicit, the element deletion technique is provided, so the damaged or dead elements are removed from the analysis once the failure criterion is locally reached. This simulates crack growth through the microstructure. It was found that the variation of the strain rate affects slightly the value of the damage model parameters of Gurson model.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Auchar Zardari ◽  
Hans Mattsson ◽  
Sven Knutsson ◽  
Muhammad Shehzad Khalid ◽  
Maria V. S. Ask ◽  
...  

Much of the seismic activity of northern Sweden consists of micro-earthquakes occurring near postglacial faults. However, larger magnitude earthquakes do occur in Sweden, and earthquake statistics indicate that a magnitude 5 event is likely to occur once every century. This paper presents dynamic analyses of the effects of larger earthquakes on an upstream tailings dam at the Aitik copper mine in northern Sweden. The analyses were performed to evaluate the potential for liquefaction and to assess stability of the dam under two specific earthquakes: a commonly occurring magnitude 3.6 event and a more extreme earthquake of magnitude 5.8. The dynamic analyses were carried out with the finite element program PLAXIS using a recently implemented constitutive model called UBCSAND. The results indicate that the magnitude 5.8 earthquake would likely induce liquefaction in a limited zone located below the ground surface near the embankment dikes. It is interpreted that stability of the dam may not be affected due to the limited extent of the liquefied zone. Both types of earthquakes are predicted to induce tolerable magnitudes of displacements. The results of the postseismic slope stability analysis, performed for a state after a seismic event, suggest that the dam is stable during both the earthquakes.


2008 ◽  
Vol 45 (1) ◽  
pp. 14-28 ◽  
Author(s):  
H. Kien Dang ◽  
Mohamed A. Meguid

A constitutive model based on the multilaminate framework has been implemented into a finite element program to investigate the effect of soil structure on the ground response to tunnelling. The model takes into account the elastic unloading–reloading, inherent and induced anisotropy, destructuration, and bonding effects. The model is successfully calibrated and used to investigate the undrained response of structured sensitive clay in the construction of the Gatineau tunnel in Gatineau, Quebec. Numerical results were compared to the field measurements taken during tunnel construction. To improve the performance of the numerical model, an implicit integration algorithm is implemented and proven to be very effective when coupled with the multilaminate framework as compared to the conventional explicit integration methods. The effect of different soil parameters including bonding and anisotropy on the tunnelling induced displacements and lining stresses is also examined using a comprehensive parametric study. The results indicated that soil bonding and anisotropy have significant effects on the shape of the settlement trough as well as the magnitudes of surface displacements and lining stresses induced by tunnelling.


1981 ◽  
Vol 17 (12) ◽  
pp. 1779-1789
Author(s):  
E. Haugeneder ◽  
W. Prochazka ◽  
P. Tavolato

Sign in / Sign up

Export Citation Format

Share Document