scholarly journals Amino acid composition of wild yam (Dioscorea spp.)

Food Research ◽  
2019 ◽  
pp. 617-621 ◽  
Author(s):  
A. Doss ◽  
P.S. Tresina ◽  
V.R. Mohan

Tubers of wild yam (Dioscorea alata, D. bulbifera var. vera, D. esculenta, D. oppositifolia var. oppositifolia, D. oppositifolia var. dukhumensis, D. pentaphylla var. pentaphylla, D. spicata, D. tomentosa and D. wallichi) were analyzed for its amino acids composition. Asparatic acid and glutamic acid were found to be predominant among all the investigated Dioscorea species which ranged from 5.21 to 9.36 and 3.20 to 8.12 g/100 g protein respectively. The essential amino acids such as isoleucine, phenylalanine tyrosine, histidine, isoleucine and valine were found to be more or less higher than FAO/WHO (1991) requirement pattern. Thus, the present investigation demonstrated that the Dioscorea spp. can act as a good source of amino acid

1967 ◽  
Vol 168 (1013) ◽  
pp. 421-438 ◽  

The uptake of thirteen essential amino acids by mouse LS cells in suspension culture was determined by bacteriological assay methods. Chemostat continuous-flow cultures were used to determine the effect of different cell growth rates on the quantitative amino acid requirements for growth. The growth yields of the cells ( Y = g cell dry weight produced/g amino acid utilized) were calculated for each of the essential amino acids. A mixture of the non-essential amino acids, serine, alanine and glycine increased the cell yield from the essential amino acids. The growth yields from nearly all the essential amino acids in batch culture were increased when glutamic acid was substituted for the glutamine in the medium. The growth yields from the amino acids in batch culture were much less at the beginning than at the end of the culture. The highest efficiencies of conversion of amino acids to cell material were obtained by chemostat culture. When glutamic acid largely replaced the glutamine in the medium the conversion of amino acid nitrogen to cell nitrogen was 100 % efficient (that is, the theoretical yield was obtained) at the optimum growth rate (cell doubling time, 43 h). The maximum population density a given amino acid mixture will support can be calculated from the data. It is concluded that in several routinely used tissue culture media the cell growth is limited by the amino acid supply. In batch culture glutamine was wasted by (1) its spontaneous decomposition to pyrrolidone carboxylic acid and ammonia, and (2) its enzymic breakdown to glutamic acid and ammonia, but also glutamine was used less efficiently than glutamic acid. Study of the influence of cell growth rate on amino acid uptake rates per unit mass of cells indicated that a marked change in amino acid metabolism occurred at a specific growth rate of 0.4 day -1 (cell doubling time, 43 h). With decrease in specific growth rate below 0.4 day -1 there was a marked stimulation of amino acid uptake rate per cell and essential amino acids were consumed increasingly for functions other than synthesis of cell material.


2013 ◽  
Vol 14 (1) ◽  
pp. 105
Author(s):  
T. Georgieva ◽  
P. Zorovski

The purpose of this survey is to study the content of non-essential amino acids in four winter (Dunav 1, Ruse 8, Resor 1, Line M-K) and five spring (Obraztsov chiflik 4, Mina, HiFi, Novosadski golozarnest and Prista 2) cultivars of oats grown in Central Southern Bulgaria within the period from 2007 to 2009. The tested cultivars have different contents of non-essential amino acids. Dunav 1 has the highest quantity of glicine (5.12 g/100 g protein) of all the winter cultivars, Ruse 8 has the highest quantity of alanine (5.69 g/100 g protein) and Resor 1 – the highest quantity of arginine (6.14 g/100 g protein). Generally speaking, the spring cultivars have a larger quantity of glutamic acid (from 25.86 to 26.07 g/100 g protein) and proline (from 6.15 to 8.21 g/100 g protein) but a smaller quantity of glycine (from 4.68 to 4.99 g/100 g protein) compared to the winter cultivars. The naked cultivar Mina has the highest quantity of cystine (2.14 g/100 g protein), cultivar Prista 2 has the highest quantity of proline (8.21 g/100 g protein) and glutamic acid (26.07 g/100g protein) and HiFi ranks first in terms of aspartic acid (9.05 g/100 g protein), serine (5.02 g/100 g protein) and tyrosine (2.09 g/100 g protein). In the study we have also established certain relations between non-essential amino acids.


1945 ◽  
Vol 81 (5) ◽  
pp. 439-448 ◽  
Author(s):  
S. C. Madden ◽  
R. R. Woods ◽  
F. W. Shull ◽  
J. H. Remington ◽  
G. H. Whipple

Several synthetic mixtures of natural and racemic crystalline amino acids suitable for the daily nitrogen requirement are tested in dogs for their tolerance upon intravenous injection. Certain mixtures of the ten essential amino acids plus non-essential amino acids exclusive of glutamic acid are accepted without any obvious sign of disturbance even at rates above 10 mg. nitrogen per kilo per minute for quantities greater than 300 mg. per kilo. One such mixture consists in parts per 100 of dl-threonine 7, dl-valine 15, l(-)-leucine 10.9, dl-isoleucine 9.9, l(+)-lysine· HCl·H2O 10.9, dl-tryptophane 3, dl-phenylalanine 9.9, dl-methionine 6, l(+)-histidine·HCl·H2O 5, l(+)-arginine-HCl 5, glycine 9.9, dl-α-alanine 4, dl-serine 2, l(-)-cystine 0.5, and l(-)-tyrosine 1. In addition other well tolerated mixtures included the prolines. When glutamic acid, natural or racemic, is included in similar mixtures vomiting reactions frequently occur at nitrogen rates above 4 mg. per kilo per minute. Vomiting almost always occurs on the first daily injection containing glutamic acid and usually on any subsequent injection containing more than 100 mg. glutamic acid per kilo unless given very slowly. Upon the addition of glycine certain mixtures of the ten essential amino acids show an improved tolerance. Two casein digests tested usually produced vomiting at injection rates above 2 mg. nitrogen per kilo per minute, probably because of their glutamic acid content. No serious reaction has ever occurrred to any mixture of amino acids or casein digest tested. Elimination of minor reactions such as vomiting appears possible and desirable for greater usefulness of these solutions in parenteral feeding.


Author(s):  
Tugay Ayasan ◽  
Mikail Baylan

The increasing costs of conventional feedstuffs like corn, soybean meal and fish meal for poultry diets is pushing the need to find less expensive alternatives. Mulberry grows well in the tropics and subtropics, and is reported to have excellent nutritional value. Mulberry leaves are very rich in protein (15-35%), minerals (2.42-4.71% Ca, 0.23-0.97% P), 1130-2240 kcal/kg metabolic energy (ME). The amino acids composition of mulberry leaf meal indicates it is a good source of essential amino acids especially lysine (1.80%) and leucine (2.58%). In this paper, studies made on the mulberry leaf used in nutrition of poultries have been reviewed.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5071
Author(s):  
Wanda Kudełka ◽  
Małgorzata Kowalska ◽  
Marzena Popis

The content of protein, moisture content and essential amino acids in conventional and genetically modified soybean grain and selected soybean products (soybean pâté, soybean drink, soybean dessert, tofu) was analyzed in this paper. The following comparative analysis of these products has not yet been carried out. No differences were observed in the amino acid profiles of soybeans and soybean products. The presence of essential amino acids was confirmed except for tryptophan. Its absence, however, may be due not to its absence in the raw material, but to its decomposition as a result of the acid hydrolysis of the sample occurring during its preparation for amino acid determination. Regardless of the type of soybean grain, the content of protein, moisture content and essential amino acids was similar (statistically insignificant difference). Thus, the type of raw material did not determine these parameters. There was a significant imbalance in the quantitative composition of essential amino acids in individual soybean products. Only statistically significant variation was found in genetically modified and conventional soybean pâté. Moreover, in each soy product their amount was lower irrespective of the raw material from which they were manufactured. Therefore, the authors indicate the necessity of enriching soybean products with complete protein to increase their nutritional value.


1956 ◽  
Vol 34 (6) ◽  
pp. 527-532 ◽  
Author(s):  
Ernest Hodgson ◽  
Vernon H. Cheldelin ◽  
R. W. Newburgh

Phormia regina grown on a chemically defined diet under sterile conditions has been shown to have a specific dietary requirement for choline. The present work shows that carnitine and 2,2-dimethylaminoethanol can completely replace this in the diet whereas betaine is ineffective in this respect. Deletion of single amino acids from a mixture of 18 adequate for growth has previously shown the following 10 amino acids to be essential: arginine, histidine, leucine, lysine, phenylalanine, threonine, tryptophan, valine, proline, and isoleucine. The present work: shows by the inability of the organism to grow on these essential amino acids that this method is not adequate to detect amino acid combinations for which alternate requirements exist. By the deletion of groups of two or more amino acids it has been shown that P. regina has a dietary requirement for either methionine or cystine and for either glutamic acid or aspartic acid. Growth on the 10 essential amino acids is stimulated by yeast extract. This is apparently not due to a simple replacement of missing amino acids, since the addition of yeast creates an increased requirement for thiamine.


1973 ◽  
Vol 53 (4) ◽  
pp. 717-724 ◽  
Author(s):  
H. A. SALEM ◽  
T. J. DEVLIN ◽  
J. R. INGALLS ◽  
G. D. PHILLIPS

The effects of a semipurified diet containing 0 (0% urea-N diet), 50 (39% urea-N diet), or 100% (76% urea-N diet) of added dietary nitrogen (N) as urea on the amino acid concentrations in ruminant tissues was investigated. Three rumen-fistulated bull calves averaging 240 kg were used in a latin square design. The calves were fed using a continuous feeder to provide 7 kg of feed daily. Each experimental period of the latin square was 40 days divided into four 10-day intervals. Liver samples were obtained on the 9th day of each 10-day interval and rumen epithelium and rumen microorganisms were obtained on the 10th day of each 10-day interval. Blood samples were collected on the 6th, 8th, and 10th day of each 10-day interval for the determination of plasma amino acid patterns as well as the amino acid concentrations in the tissues. Plasma amino acid patterns indicated that when the 76% urea-N diet was fed the levels of aspartic acid, citrulline, glutamic acid, glycine, and proline were increased. Most of the essential amino acids were decreased on the 76% urea-N diet as compared with the 0% urea-N diet. All amino acids of rumen microorganisms were increased on the 39% urea-N diet with the exception of arginine, lysine, and threonine, which decreased slightly or did not show any change. Most amino acids were lower on the 76% urea-N diet as compared with the 39% or 0% urea-N diets. All essential amino acids measured in the liver were reduced on the 76% urea-N diet. Cystine, glutamic acid, glycine, isoleucine, leucine, lysine, tryptophan, and valine were also reduced on the 39% urea-N diet. In rumen epithelium, there was a reduction of the essential amino acids and an increase of the nonessential amino acids on the 76% urea-N diet.


2015 ◽  
Vol 58 (1) ◽  
pp. 30-39
Author(s):  
Emmanuel Ilesanmi Adeyeye

The amino acids composition of the brain and eyes of the mature Turkey-hen (Meleagris gallopavo L.),  were determined on dry weight basis. Total essential amino acids ranged from 35.1-36.0 g/100 g as 49.5-49.8% of the total amino acids. The amino acid score showed that lysine ranged from 0.76-0.91 (on whole hen’s egg comparison), 0.85-1.03 (on provisional essential amino acid scoring pattern), and 0.81-0.98 (on suggested requirement of the essential amino acid of a preschool child). The predicted protein efficiency ratio was 1.94-2.41, whilst essential amino acid index range was 1.06-1.08 and the calculated isoelectric point range was 3.97-4.18. The correlation coefficient (rxy) was positively high and significant at r = 0.01 for the total amino acids, amino acid scores (on the whole hen’s egg comparisons made) and the isoelectric point. On the whole, the eyes were better in 12/18 or 66.7% parameters of the amino acids than the brain of Turkey-Hen.


2020 ◽  
Vol 12 (1) ◽  
pp. 11-19
Author(s):  
Olawale Paul Olatidoye ◽  
Taofik Akinyemi Shittu ◽  
Samuel Olusegun Anwonorin ◽  
Emmanuel Sunday Akin Ajisegiri

Cashew kernels are one of the most concentrated food products due to their fat and protein content and they are used in puddings and bakery products, hence the determination of their protein quality is an important nutritional factor in dietary protein requirements. Therefore, the study aimed at evaluating the effect of roasting conditions on the protein quality of cashew kernels at the temperature of 100–160 °C and time (20–60 min), and then analysing for the amino acid profile by GC-FID; protein predicted efficiency ratio (P-PER), essential amino acid index (EAAI), and the Isoelectric point (pI). About 2.0 kg of dried cashew kernels used were defatted using chloroform/methanol (2:1/v/v) as the extraction solvent and then analysed using standard methods. The results showed that seventeen amino acids were present in cashew nuts, where glutamic acid (15.27g/100gN); aspartic acid (12.20g/100gN); lysine (6.09g/100g N), and phenylalanine (5.06g/100g N) were predominant. Eight essential amino acids were present in cashew kernels, the highest value of 7.33g/100g were for lysine (6.09g/100gN); 1.70g/100gN (histidine); 3.42g/100gN (threonine); 3.63g/100gN (valine); 3.57 g/100gN (isoleucine); 7.33g/100gN (leucine); and 5.06g/100gN (phenylalanine). Roasting reduced the lysine content by 18.4%, phenylalanine by 12.06%, and aspartic acid by 41.4% at 160°C for 60 min, while serine (58.9%); glutamic acid (19.7%); arginine (47.4%), and histidine (115.9%) were increased, suggesting that cashew nuts contain high quality protein. P-PER results were 2.57 (raw), 171-2.61 (roasted); EAAI is 1.55(raw) and 1.38-1.55 (roasted), BV% is 76.15 (raw) and 67.61-76.89 (roasted); the Isoelectric points were 4.65 (raw) and 3.87- 4.54 (roasted), The Leu/Ileu ratio was 2.12 (raw) and 2.01-2.67 (roasted). It was concluded that the heat treatment used does not significantly affect the amino acid profile of cashew kernels, thus preserving their nutritional quality.


Author(s):  
Onyale V. Oduma ◽  
Ufot E. Inyang ◽  
Okema N. Okongoh

The present study was conducted to see the effect of replacement of peanut paste with different levels of sesame seed paste on the nutritional and anti-nutritional components of butter made from the blends. The peanut: Sesame seed pastes were used in the ratios of 100:00, 90:10, 80:20, 70:30, 60:40, 50:50 and 00:100 with 100% peanut and sesame seed pastes as control samples. The results showed that all the parameters determined varied with the proportion of sesame seed paste in the blends. The crude protein, ash, crude fibre and carbohydrate progressively decreased with increase in the level of sesame seed paste substitution. On the contrary, fat and caloric value increased progressively with increase in sesame seed paste in the blends. The total amino acids decreased from 88.24 g/100 g protein while the total essential amino acids increased from 35.30 g/100 g protein in 100% peanut butter to 87.36 g/100 g protein and 37.71 g/100 g protein respectively in 50% sesame seed paste substituted butter. Methionine and cystine increased while lysine decreased with increase in sesame paste substitution. Majority of essential amino acid chemical scores were above 100% except lysine (63.45 – 98 – 28% for samples that contained sesame seed paste) and sulphur containing amino acids (78.00% and 92.40% for 100% peanut butter and 10% sesame paste supplemented butter respectively). The contents of K, Na, saponin and tannin in the butter decreased while Ca, Mg, Fe, Zn, oxalate and phytate increased with increase in sesame seed paste substitution. The values for anti-nutrients were low and may not have serious effect on nutrients bioavailability. The result has shown that production of butter from blends of peanut and sesame seed paste would enhance the essential amino acids composition and other nutrients and could lead to increased utilization of sesame seed.


Sign in / Sign up

Export Citation Format

Share Document