scholarly journals Impact of different thin layer drying temperatures on the drying time and quality of butterfly pea flowers

Food Research ◽  
2021 ◽  
Vol 5 (6) ◽  
pp. 197-203
Author(s):  
N.M. Thuy ◽  
V.Q. Minh ◽  
T.C. Ben ◽  
H.T.N. Ha ◽  
N.V. Tai

With attractive flower colours ranging from dark green to purple, Butterfly pea (Clitoria ternatea L.) is grown year-round in Vietnam. The purpose of this study is to determine the effect of air temperature on drying time and antioxidant compounds of Butterfly pea flowers, fitting the drying curves and testing the goodness of fit. In this study, air drying characteristics of the Butterfly pea flowers were determined using drying air temperature from 55oC to 70oC at a constant air velocity of 1 m/s. The data of experimental moisture loss were fitted to selected seven thin-layer drying models. The effect of drying conditions on the anthocyanin and total phenolic compound changes of Butterfly pea flower were compared. The effect of temperature on the diffusivity was described using the Arrhenius equation with an activation energy of 71.63 kJ.mol- ¹. At increasing temperature, the effective moisture diffusivity values ranged from 2.39×10-12 and 7.76×10-12 m²s - ¹. The mathematical models were compared according to the three statistical parameters such as the coefficient of determination (R2 ), reduced chi-square (χ 2 ) and root mean square error (RMSE) between the observed and predicted moisture ratios. The highest value of R2 (99.8%) and the lowest values of χ 2 (0.0004) and RMSE (0.0178) were observed for drying air temperature of 70oC. Among the seven mathematical models tested with experimental data, the Page model could sufficiently be described the drying characteristics of the Butterfly pea flower.

2018 ◽  
Vol 6 (2) ◽  
pp. 552-565 ◽  
Author(s):  
Eunice Akello Mewa ◽  
Michael Wandayi Okoth ◽  
Catherine Nkirote Kunyanga ◽  
Musa Njue Rugiri

The objective of the present study was to determine the drying kinetics, moisture diffusivity and sensory quality of convective air dried beef. The effect of temperature of drying (30-60°C) and thickness of samples (2.5-10 mm) on the convective thin-layer drying kinetics of beefdried in a cabinet dryer was evaluated. Five semi-theoretical models were fit to the drying experimentaldata with the aim of predicting drying characteristics of beef and fitting quality of models determined using the standard error of estimate (SEE)and coefficient of determination (R2). Determination ofeffective moisture diffusivity (Deff) from the experimental drying datawas done and sensory quality of the optimized dried cooked and uncookedbeef samplesevaluated. Drying time and rate of drying increased with an increasing temperature but decreased with increased slice thickness. However, there was overlapping of drying curves at 40-50°C. Among the selected models, Page model gave the best prediction of beef drying characteristics. Effective moisture diffusivity (Deff) ranged between 4.2337 x 10-11 and 5.5899 x 10-10 m2/s, increasing with an increase in air temperature and beef slice thickness.Of all the sensory parameters evaluated, texture was the only attribute that gave significantly different (P > 0.05) scores between the cooked and uncooked dried beef samples.


Author(s):  
Abdul Wasim Noori ◽  
Mohammad Jafar Royen ◽  
Juma Haydary

This paper aims to investigate the effect of climate conditions such as ambient temperature, humidity, pressure, sun radiation and pollution on sliced apples quality and drying time which are dried in an indirect forced cabinet solar drying (IFCSD) and open sun drying (OSD) systems. Both experiments were implemented at same place (Kabul, Afghanistan) and time. The IFCSD yield for saving time is 42.8 % which is more effective than drying in the OSD system. Simultaneously with the decreasing of sliced apple weight from 512.9 g down to 73.9 g, the water activity decreased from 0.955 down to 0.355 in the IFCSD system. For OSD system, the sample weight decreased from 512.6 g down to 78.4 g and its water activity from 0.955 down to 0.411. On the experiment day the average sun radiation was 571 w/m2 . The pressure drop between inlet and outlet of the dryer was 0.1 kPa. Different thin-layer mathematical models were investigated to identify the best model fitting the experimental data. The mathematical models’ performances were investigated by comparing the coefficient of determination (R 2 ), reduced chi-square (X2 ) and root mean square error (RMSE) coefficients. From all 11 applied thin-layer drying models the Page, Approximation diffusion, Verma et al and Midilli and Kacuk models are more fitted to our data.


Author(s):  
Toyosi Y Tunde-Akintunde

In this paper, the effect of sun and solar drying and pretreatment conditions (soaking in water; soaking in water and then blanching; blanching and then soaking) on the drying characteristics and kinetics of cassava chips were investigated. The drying time was shorter for samples pretreated by soaking only (SK) compared to the others. It was observed that pretreatment conditions and drying method significantly (P < 0.05) affected the drying rate. The drying for all experiments occurred in the falling rate period with no constant rate period. Four mathematical models were studied for the description thin layer drying characteristics of pretreated cassava chips. The models considered were the Henderson and Pabis, Newton, Logarithmic and the Page model. Comparing the correlation coefficients (R2), chi-square (c2) and root mean square error (RMSE) values of four models, it was observed that the highest values of R2 and lowest ?2 and RMSE were obtained using Page model. This shows that the Page model represents drying characteristics better than other models. The effective moisture diffusivity values were estimated from Fick’s diffusional model. These values obtained for solar dried samples were generally higher than those obtained for sun dried samples.


Author(s):  
A. Stegou-Sagia ◽  
D. V. Fragkou

In the present research, experimental data from several studies about drying behavior of mushrooms have been selected and used to compare different drying methods and different mathematical thin layer drying models to simulate mushroom drying rates. The white button (Agaricus Bisporus), the oyster (Pleurotus Ostreatus) and the milky mushroom slices have been considered for drying in different dryers such as hot air cabinet dryer and fluidized bed dryer with different slice thicknesses, drying air temperatures (45 °C to 90 °C) and drying air velocities (0.2 m/s to 5 m/s). The entire drying process has taken place in the falling rate period, assuming that internal mass transfer occurred by diffusion in mushroom slices. The study shows that the drying air temperature and the drying air velocity have an effect on the moisture removal from mushrooms and also on the drying time. Mathematical models have been proved to be useful for design and analysis of heat and mass transfer during drying processes. All the drying models considered in this study could adequately represent the thin layer drying behavior of mushrooms. Furthermore, as it is obvious, any type of mushrooms has its own most suitable model.


The study is aimed experimentally and compared with the theoretical results of drying kinetics of Nagpur orange fruit dried in a hot air electrical dryer. Orange fruit is highly perishable and needs to be consumed or processed immediately after harvest. Drying or dehydration is one of the most practical methods of preserving food products. Therefore, thin layer drying characteristics of falling rate of Nagpur orange are determined experimentally under different conditions of drying air temperatures, relative humidity and air velocities for different moisture contents. Thin layer models like Wang and Singh, Page and Henderson have been compared with Experimental results. The knowledge of drying kinetics helps for identification of exact drying time and air flow velocity for different moisture content. Here drying operation is carried out at a velocity of 1m/sec and 1.25 m/sec for different temperature of 55°C, 65°C and 75°C. This analysis reveals that drying temperature has a more significant effect on moisture removal while velocity has the least effect. Drying rate is found to increase with the increase in drying temperature and reduce with drying time. Experimental data is statistically correlated by plotting the drying characteristics curve. The analysis reveals that Wang and Singh's model is a better model to explain the drying behavior of Nagpur Orange fruit (R2=0.9888).


2021 ◽  
Vol 37 (4) ◽  
pp. 713-724
Author(s):  
Fuji Jian ◽  
Mehul Patil ◽  
Digvir S. Jayas ◽  
Jitendra Paliwal

Highlights Thin-layer drying of fresh and sun-dried buckwheat hay was studied at 30°C to 180°C and 12.5% to 60% relative humidities. Buckwheat hay drying occurred in the falling-rate period. Partial sun-drying of the hay could reduce drying time by 50%. The D eff values of fresh flowers, leaves, and stems ranged from 1.4×10 -10 to 60×10 -10 m 2 /s. Abstract. Thin-layer drying characteristics of fresh and sun-dried buckwheat hay were studied at 30°C to 180°C, 12.5 to 60% relative humidities, and 0.2 m/s constant air velocity. The hay was harvested on three different times with a 10 to 12 d interval between the harvesting times. Half of the harvested hay was sun-dried on the field for 4 d (referred to as sun-dried hay). The drying behavior of flowers, leaves, and stems of the fresh and sun-dried hay was characterized. Moisture content of the fresh buckwheat flower was 0.777 to 1.633 (decimal dry basis), and fresh stems had a maximum moisture content of 5.64. Moisture content of the fresh hay decreased with the increase of growth time. Sun-drying on field could decrease more than half of the moisture content of the harvested fresh hay. Flowers, leaves, and stems needed varying drying times to reach their equilibrium moisture contents. The order of the drying time from the fastest to the slowest was flowers, leaves, then stems. Sun-dried and later harvested hay needed less drying time. The logarithmic model was the best fit for all drying processes of the flowers, leaves, and stems at different harvesting times and drying conditions. The effective moisture diffusivity of both fresh and sun-dried hay ranged from 1.4×10-10 to 60× 10-10 m2/s depending on different experimental conditions. The activation energy of the hay was from 21.08 to 33.85 kJ/mol. A power equation was the best equation to describe the drying constant of hay with their drying temperature. Keywords: Activation energy, Combination drying, Hay drying, Thin-layer drying, Water diffusivity.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 726
Author(s):  
Andrzej Bryś ◽  
Agnieszka Kaleta ◽  
Krzysztof Górnicki ◽  
Szymon Głowacki ◽  
Weronika Tulej ◽  
...  

Drying of spruce, beech, willow, and alder sawdust was examined in a laboratory type dryer. The effect of drying air temperature T (25, 60, and 80 °C) and airflow velocity v (0.01, 0.15, and 1.5 m/s) was investigated. The obtained results demonstrated that drying air temperature and airflow velocity have impacts on the drying of sawdust. The experimental dehydration data of sawdust obtained were fitted to theoretical, semi-theoretical, and empirical thin-layer models. The accuracies of the models were estimated using the correlation coefficient (R), root mean square error (RMSE), and reduced chi-square (χ2). All models except the theoretical model of a sphere described the drying characteristics of sawdust satisfactorily. The effect of T and v on the parameters (constants and coefficients) of the drying models were determined. The effect, by the proposed equations, was also described. This work combines aspects of mechanical engineering and modelling of the drying process.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Xiao-Kang Yi ◽  
Wen-Fu Wu ◽  
Ya-Qiu Zhang ◽  
Jun-Xing Li ◽  
Hua-Ping Luo

A mathematical modeling of thin-layer drying of jujubes in a convective dryer was established under controlled conditions of temperature and velocity. The drying process took place both in the accelerating rate and falling rate period. We observed that higher temperature reduced the drying time, indicating higher drying rates of jujubes. The experimental drying data of jujubes were used to fit ten different thin-layer models, then drying rate constants and coefficients of models tested were determined by nonlinear regression analysis using the Statistical Computer Program. As for all the drying models, the Weibull distribution model was superior and best predicted the experimental values. Therefore, this model can be used to facilitate dryer design and promote efficient dryer operation by simulation and optimization of the drying processes. The volumetric shrinkable coefficient of jujubes decreased as the drying air temperature increased.


2017 ◽  
Vol 47 (6) ◽  
pp. 765-779 ◽  
Author(s):  
Dupe Temilade Otolowo ◽  
Abiodun Adekunle Olapade ◽  
Samouel Olugbenga Oladele ◽  
Felix Egbuna

Purpose Fresh catfish (Clarias gariepinus) is highly perishable. This paper aims to investigate the drying characteristics and quality of body-mass dehydrated catfish to determine the effective dehydration parameters for preservation. Design/methodology/approach Brine concentration (3-9 per cent), brining time (30-90 min) and drying temperature (90-130°C) interacted using the response surface methodology. Preliminary experiments were conducted to select treatments. Moisture content and ratio and drying rate were determined and fitted into five thin-layer drying models; the goodness of fit was evaluated by average grade ranking of the regression parameters. Proximate compositions and microbial load of dehydrated catfish were determined using standard methods. Findings Treatments with 110°C gave initial higher drying rate (0.034-0.043 kg H2O/kg solid/h) and shorter drying time (20-21 h). Drying occurred at two falling rate periods. Midilli model ranked first in fitting the drying data. It explained up to 99.6-99.7 per cent of the total variations in the independent variables with low values of error terms; RMSE was 0.02131-0.01794 and χ2 was 0.00037-0.00043, indicating good predictive quality. Processing parameters positively and significantly (p < 0.05) influenced the proximate compositions of dehydrated catfish. Treatment: 6 per cent brine, 90 min and 110°C presented the most effective dehydration parameters for quality preservation of body-mass catfish. Practical implications The dehydration technique used in this study could enhance nutritive quality and storage stability of body-mass dehydrated catfish that could serve as a useful and convenient tool for commercial application. Social implications Hygienically processed dehydrated catfish of good quality could be used as a source of nutrients to ameliorate malnutrition and reduce post-harvest losses of catfish. Originality/value The effective processing parameters established is an important step to harness the high nutrients and economic values embedded in catfish.


Author(s):  
Ayhan Duran ◽  
Ali Adnan Hayaloglu ◽  
Ihsan Karabulut

Effect of air temperature (50, 60 and 70 °C) and sample thickness (1.0, 1.4 and 1.8 mm) on the thin-layer drying characteristics of eriste was studied by using a tray dryer. The data of sample weight, dry and wet-bulb temperatures were recorded continuously during each experiment and drying curves were obtained. The drying curves were then fitted to five mathematical models available in the literature to estimate a suitable model for drying of eriste. Verma et al. model gave better predictions than other models and satisfactorily described the thin layer characteristics of eriste. The effective diffusivity varied from 1.8 x exp-10 to 1.5 x exp-9 m2 s-1 over the temperature range.


Sign in / Sign up

Export Citation Format

Share Document