scholarly journals Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems

2006 ◽  
Vol 397 (2) ◽  
pp. 247-259 ◽  
Author(s):  
Mohamed B. Al-Fageeh ◽  
C. Mark Smales

Although the cold-shock response has now been studied in a number of different organisms for several decades, it is only in the last few years that we have begun to understand the molecular mechanisms that govern adaptation to cold stress. Notably, all organisms from prokaryotes to plants and higher eukaryotes respond to cold shock in a comparatively similar manner. The general response of cells to cold stress is the elite and rapid overexpression of a small group of proteins, the so-called CSPs (cold-shock proteins). The most well characterized CSP is CspA, the major CSP expressed in Escherichia coli upon temperature downshift. More recently, a number of reports have shown that exposing yeast or mammalian cells to sub-physiological temperatures (<30 or <37 °C respectively) invokes a co-ordinated cellular response involving modulation of transcription, translation, metabolism, the cell cycle and the cell cytoskeleton. In the present review, we summarize the regulation and role of cold-shock genes and proteins in the adaptive response upon decreased temperature with particular reference to yeast and in vitro cultured mammalian cells. Finally, we present an integrated model for the co-ordinated responses required to maintain the viability and integrity of mammalian cells upon mild hypothermic cold shock.

2006 ◽  
Vol 188 (12) ◽  
pp. 4560-4569 ◽  
Author(s):  
Haichun Gao ◽  
Zamin K. Yang ◽  
Liyou Wu ◽  
Dorothea K. Thompson ◽  
Jizhong Zhou

ABSTRACT This study presents a global transcriptional analysis of the cold shock response of Shewanella oneidensis MR-1 after a temperature downshift from 30°C to 8 or 15°C based on time series microarray experiments. More than 700 genes were found to be significantly affected (P ≤ 0.05) upon cold shock challenge, especially at 8°C. The temporal gene expression patterns of the classical cold shock genes varied, and only some of them, most notably so1648 and so2787, were differentially regulated in response to a temperature downshift. The global response of S. oneidensis to cold shock was also characterized by the up-regulation of genes encoding membrane proteins, DNA metabolism and translation apparatus components, metabolic proteins, regulatory proteins, and hypothetical proteins. Most of the metabolic proteins affected are involved in catalytic processes that generate NADH or NADPH. Mutational analyses confirmed that the small cold shock proteins, So1648 and So2787, are involved in the cold shock response of S. oneidensis. The analyses also indicated that So1648 may function only at very low temperatures.


2009 ◽  
Vol 192 (5) ◽  
pp. 1344-1352 ◽  
Author(s):  
Naoki Awano ◽  
Vaishnavi Rajagopal ◽  
Mark Arbing ◽  
Smita Patel ◽  
John Hunt ◽  
...  

ABSTRACT In Escherichia coli, the cold shock response occurs when there is a temperature downshift from 37°C to 15°C, and this response is characterized by induction of several cold shock proteins, including the DEAD-box helicase CsdA, during the acclimation phase. CsdA is involved in a variety of cellular processes. Our previous studies showed that the helicase activity of CsdA is critical for its function in cold shock acclimation of cells and that the only proteins that were able to complement its function were another helicase, RhlE, an RNA chaperone, CspA, and a cold-inducible exoribonuclease, RNase R. Interestingly, other major 3′-to-5′ processing exoribonucleases of E. coli, such as polynucleotide phosphorylase and RNase II, cannot complement the cold shock function of CsdA. Here we carried out a domain analysis of RNase R and showed that this protein has two distinct activities, RNase and helicase, which are independent of each other and are due to different domains. Mutant RNase R proteins that lack the RNase activity but exhibit the helicase activity were able to complement the cold shock function of CsdA, suggesting that only the helicase activity of RNase R is essential for complementation of the cold shock function of CsdA. We also observed that in vivo deletion of the two cold shock domains resulted in a loss of the ability of RNase R to complement the cold shock function of CsdA. We further demonstrated that RNase R exhibits helicase activity in vitro independent of its RNase activity. Our results shed light on the unique properties of RNase R and how it is distinct from other exoribonucleases in E. coli.


1991 ◽  
Vol 11 (1) ◽  
pp. 401-411
Author(s):  
S Cuthill ◽  
A Wilhelmsson ◽  
L Poellinger

To reconstitute the molecular mechanisms underlying the cellular response to soluble receptor ligands, we have exploited a cell-free system that exhibits signal- (dioxin-)induced activation of the latent cytosolic dioxin receptor to an active DNA-binding species. The DNA-binding properties of the in vitro-activated form were qualitatively indistinguishable from those of in vivo-activated nuclear receptor extracted from dioxin-treated cells. In vitro activation of the receptor by dioxin was dose dependent and was mimicked by other dioxin receptor ligands in a manner that followed the rank order of their relative affinities for the receptor in vitro and their relative potencies to induce target gene transcription in vivo. Thus, in addition to triggering the initial release of inhibition of DNA binding and presumably allowing nuclear translocation, the ligand appears to play a crucial role in the direct control of the level of functional activity of a given ligand-receptor complex.


2021 ◽  
Author(s):  
◽  
Sarah Cordiner

<p>Yessotoxin (YTX) is a disulfated polycyclic polyether, produced by dinoflagellate algae. It is known to accumulate in edible shellfish, raising concerns about its potential risk to human health. YTX was initially classified as a diarrhetic shellfish poisoning toxin, due to commonly being extracted alongside toxins of this variety. However, YTX does not induce any of the effects characteristic of this group. A separate category for YTXs was established by the European Commission in 2002 and a limit of 1 mg/kg of shellfish meat was established. YTX has been shown to be an apoptosis inducer in a variety of cell lines in vitro. It has also been shown to be lethal to mice when administered by intra-peritoneal injection. However, when administered orally only limited toxicity is observed. The di-desulfated derivative (dsYTX) has also been shown to be lethal to mice following intra-peritoneal injection. However it causes damage mainly to the liver, whereas YTX appears to target the heart. The mechanism of action of YTX is still unknown. The goals of this project were to use proteomic techniques, to examine the effects of YTX and dsYTX on Saccharomyces cerevisiae and human promyelocytic leukemic blood leukocyte (HL60) cells. Young et al. (2009) showed that the major proteins affected by YTX in HepG2 cells were heterogeneous ribonucleoproteins (hnRNPs), lamins, cathepsins and heat shock proteins. HnRNPs had not previously been identified as possible targets of YTX. Alterations of hnRNP levels were also seen in HL60 cells treated with microtubule stabilising agents, peloruside A or paclitaxel (Wilmes et al., 2011, 2012). No differences in cell morphology or significant changes in protein abundance were observed when S. cerevisiae cells were exposed to YTX. A small number of significant changes in abundance were detected when these cells were exposed to dsYTX. The small number of protein changes seen is possibly due to poor toxin entrance into the cell through the yeast cell wall, lack of protein targets structurally homologous to those found in mammalian cells, or fast removal of the toxin through export pumps. Twenty-four hour incubation of HL60 cells with YTX resulted in increased cell death but no change in cell morphology. Treatment with dsYTX caused cells to aggregate into clusters and a 24% decrease in the number of live cells. Increases were found in the abundance of β-actin, hnRNP A and BiP proteins in response to dsYTX treatment. Decreases in these proteins were seen in HepG2 cells treated with YTX for 24 hours. As seen in S. cerevisiae cells, dsYTX had a greater effect in HL60 cells compared with YTX. Overall, the results provide some support for the previously identified effect on hnRNPs in mammalian cells exposed to YTX.</p>


2021 ◽  
Author(s):  
◽  
Sarah Cordiner

<p>Yessotoxin (YTX) is a disulfated polycyclic polyether, produced by dinoflagellate algae. It is known to accumulate in edible shellfish, raising concerns about its potential risk to human health. YTX was initially classified as a diarrhetic shellfish poisoning toxin, due to commonly being extracted alongside toxins of this variety. However, YTX does not induce any of the effects characteristic of this group. A separate category for YTXs was established by the European Commission in 2002 and a limit of 1 mg/kg of shellfish meat was established. YTX has been shown to be an apoptosis inducer in a variety of cell lines in vitro. It has also been shown to be lethal to mice when administered by intra-peritoneal injection. However, when administered orally only limited toxicity is observed. The di-desulfated derivative (dsYTX) has also been shown to be lethal to mice following intra-peritoneal injection. However it causes damage mainly to the liver, whereas YTX appears to target the heart. The mechanism of action of YTX is still unknown. The goals of this project were to use proteomic techniques, to examine the effects of YTX and dsYTX on Saccharomyces cerevisiae and human promyelocytic leukemic blood leukocyte (HL60) cells. Young et al. (2009) showed that the major proteins affected by YTX in HepG2 cells were heterogeneous ribonucleoproteins (hnRNPs), lamins, cathepsins and heat shock proteins. HnRNPs had not previously been identified as possible targets of YTX. Alterations of hnRNP levels were also seen in HL60 cells treated with microtubule stabilising agents, peloruside A or paclitaxel (Wilmes et al., 2011, 2012). No differences in cell morphology or significant changes in protein abundance were observed when S. cerevisiae cells were exposed to YTX. A small number of significant changes in abundance were detected when these cells were exposed to dsYTX. The small number of protein changes seen is possibly due to poor toxin entrance into the cell through the yeast cell wall, lack of protein targets structurally homologous to those found in mammalian cells, or fast removal of the toxin through export pumps. Twenty-four hour incubation of HL60 cells with YTX resulted in increased cell death but no change in cell morphology. Treatment with dsYTX caused cells to aggregate into clusters and a 24% decrease in the number of live cells. Increases were found in the abundance of β-actin, hnRNP A and BiP proteins in response to dsYTX treatment. Decreases in these proteins were seen in HepG2 cells treated with YTX for 24 hours. As seen in S. cerevisiae cells, dsYTX had a greater effect in HL60 cells compared with YTX. Overall, the results provide some support for the previously identified effect on hnRNPs in mammalian cells exposed to YTX.</p>


Materials ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 1427 ◽  
Author(s):  
Agmal Scherzad ◽  
Till Meyer ◽  
Norbert Kleinsasser ◽  
Stephan Hackenberg

Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival.


2017 ◽  
Vol 7 (4) ◽  
pp. 20160113 ◽  
Author(s):  
Yuru Deng ◽  
Edlyn Li-Hui Lee ◽  
Ketpin Chong ◽  
Zakaria A. Almsherqi

The frequent appearance of non-lamellar membrane arrangements such as cubic membranes (CMs) in cells under stressed or pathological conditions points to an intrinsic cellular response mechanism. CM represents highly curved, three-dimensional nano-periodic structures that correspond to mathematically well-defined triply periodic minimal surfaces. Specifically, cellular membrane may transform into CM organization in response to pathological, inflammatory and oxidative stress conditions. CM organization, thus, may provide an advantage to cope with various types of stress. The identification of inducible membrane systems, such as in the mitochondrial inner membranes to cubic morphology upon starvation, opens new avenues for understanding the molecular mechanisms of cellular responses to oxidative stress. In this study, we compared the cellular responses of starved and fed amoeba Chaos carolinense to oxidative stress. Food deprivation from C. carolinense induces a significant increase in prooxidants such as superoxide and hydrogen peroxide. Surprisingly, we observed a significant lower rate of biomolecular damage in starved cells (with higher free radicals generation) when compared with fed cells. Specifically, lipid and RNA damages were significantly less in starved cells compared with fed cells. This observation was not due to the upregulation of intracellular antioxidants, as starved amoeba show reduced antioxidant enzymatic activities; however, it could be attributed to CM formation. CM could uptake and retain short segments of nucleic acids (resembles cellular RNA) in vivo and in vitro. Previous results showed that nucleic acids retained within CM sustain a minimal oxidative damage in vitro upon exposure to high level of superoxide. We thus propose that CM may act as a ‘protective’ shelter to minimize the oxidation of biologically essential macromolecules such as RNA. In summary, we examined enzymatic antioxidant activities as well as oxidative damage biomarkers in starved amoeba C. carolinense in correlation with the potential role of CM as an optimal intracellular membrane organization for the protection of biological macromolecules against oxidative damage.


2008 ◽  
Vol 183 (1) ◽  
pp. 49-61 ◽  
Author(s):  
Kristopher J. Stanya ◽  
Yu Liu ◽  
Anthony R. Means ◽  
Hung-Ying Kao

Silencing mediator for retinoic acid and thyroid hormone receptor (SMRT) is a transcriptional corepressor that participates in diverse signaling pathways and human diseases. However, regulation of SMRT stability remains largely unexplored. We show that the peptidyl-prolyl isomerase Pin1 interacts with SMRT both in vitro and in mammalian cells. This interaction requires the WW domain of Pin1 and SMRT phosphorylation. Pin1 regulates SMRT protein stability, thereby affecting SMRT-dependent transcriptional repression. SMRT phosphorylation at multiple sites is required for Pin1 interaction, and these sites can be phosphorylated by Cdk2, which interacts with SMRT. Cdk2-mediated phosphorylation of SMRT is required for Pin1 binding and decreases SMRT stability, whereas mutation of these phosphorylation sites abrogates Pin1 binding and stabilizes SMRT. Finally, decreases in SMRT stability occur in response to the activation of Her2/Neu/ErbB2, and this receptor functions upstream of both Pin1 and Cdk2 in the signaling cascade that regulates SMRT stability and cellular response to tamoxifen.


1994 ◽  
Vol 300 (1) ◽  
pp. 201-209 ◽  
Author(s):  
G Elia ◽  
M G Santoro

Synthesis of heat-shock proteins (HSPs) is universally induced in eukaryotic and prokaryotic cells by exposure to elevated temperatures or to other types of environmental stress. In mammalian cells, HSPs belonging to the 70 kDa family (HSP70) have a regulatory role in several cellular processes, and have been shown to be involved in the control of cell proliferation and differentiation. Although many types of HSP70 inducers have been identified, only a few compounds, all belonging to the flavonoid group, have been shown to inhibit HSP70 induction. Because inhibitors of HSP70 synthesis could be an important tool with which to study the function of this protein, we have investigated the effect of quercetin, a flavonoid with antiproliferative activity which is widely distributed in nature, on HSP70 synthesis in human K562 erythroleukaemia cells after treatment with severe or mild heat shock and with other inducers. Quercetin was found to affect HSP70 synthesis at more than one level, depending on the conditions used. Indeed, after severe heat shock (45 degrees C for 20 min) treatment with quercetin, at non-toxic concentrations, was found to inhibit HSP70 synthesis for a period of 3-4 h. This block appeared to be exerted at the post-transcriptional level and to be cell-mediated, as the addition of quercetin during translation of HSP70 mRNA in vitro had no effect. After prolonged (90 min) exposure at 43 degrees C, however, quercetin was found to inhibit also HSP70 mRNA transcription. Pretreatment of K562 cells with quercetin had no effect on HSP70 expression, and quercetin needed to be present during induction to be effective. Under all conditions tested, the quercetin-induced block of HSP70 synthesis was found to be transient and, after an initial delay, synthesis of HSP70 reached the control rate and continued at the same level for several hours after the time at which HSP70 synthesis had been turned off in control cells. Finally, inhibition of HSP70 synthesis by quercetin appeared to be dependent on the temperature used and on the type of stressor.


2006 ◽  
Vol 74 (2) ◽  
pp. 1243-1254 ◽  
Author(s):  
Sofia Eriksson Ygberg ◽  
Mark O. Clements ◽  
Anne Rytkönen ◽  
Arthur Thompson ◽  
David W. Holden ◽  
...  

ABSTRACT Mutational inactivation of the cold-shock-associated exoribonuclease polynucleotide phosphorylase (PNPase; encoded by the pnp gene) in Salmonella enterica serovar Typhimurium was previously shown to enable the bacteria to cause chronic infection and to affect the bacterial replication in BALB/c mice (M. O. Clements et al., Proc. Natl. Acad. Sci. USA 99:8784-8789, 2002). Here, we report that PNPase deficiency results in increased expression of Salmonella plasmid virulence (spv) genes under in vitro growth conditions that allow induction of spv expression. Furthermore, whole-genome microarray-based transcriptome analyses of bacteria growing inside murine macrophage-like J774.A.1 cells revealed six genes as being significantly up-regulated in the PNPase-deficient background, which included spvABC, rtcB, entC, and STM2236. Mutational inactivation of the spvR regulator diminished the increased expression of spv observed in the pnp mutant background, implying that PNPase acts upstream of or at the level of SpvR. Finally, competition experiments revealed that the growth advantage of the pnp mutant in BALB/c mice was dependent on spvR as well. Combined, our results support the idea that in S. enterica PNPase, apart from being a regulator of the cold shock response, also functions in tuning the expression of virulence genes and bacterial fitness during infection.


Sign in / Sign up

Export Citation Format

Share Document