scholarly journals Research and optimization of production cycle of high-precision composite spacecraft antenna reflector

2019 ◽  
pp. 59-72
Author(s):  
N. А. Berdnikova ◽  
O. А. Belov ◽  
А. V. Lopatin

The article presents a finite element model of CFRP (carbon fiber reinforcement material) reflector polymerization in autoclave for prediction of its shape after removing from the tool. The simulation was performed in the FEM software environment. The technique has developed in this work provides an opportunity to predict a shape and values of the production deformation of the reflector prior to its manufacture, and, if necessary, to introduce design and technological modifications. Successful verification of the finite-element modeling results of the reflector polymerization was performed using a full-scale experiment. Tool from CFRP has been created to forming the composite antenna reflector. This tool is cheaper than the Invar tool currently used. Also, the CFRP tool requires less time to manufacture. Recommendations for improving the technological process of composite contour antenna reflectors production manufactured on CFRP-tool are developed in the paper. The optimum curing mode of the composite reflector is determined. The research results were used in the performance of experimental design work and in the manufacture of reflectors for the spacecraft.

2020 ◽  
Vol 210 ◽  
pp. 05017
Author(s):  
Arkady Soloviev ◽  
Andrey Matrosov ◽  
Ivan Panfilov ◽  
Besarion Meskhi ◽  
Oleg Polushkin ◽  
...  

Mathematical and computer finite element model in the ACELAN package of resonant impact on a spike was developed and a full-scale experiment was carried out. Two installations are considered, one based on a cantilever, the free end of which acts on the spike, and the second is a semi-passive round bimorph. Excitation of vibrations is carried out using an actuator based on piezoceramic elements. In the first installation, low-frequency vibrations of the stem with a spike are excited and the resonance frequency is determined at which only an spike with grain performs intense vibrations. The second installation is designed to excite high-frequency vibrations at which resonant movements of the grains themselves arise. The purpose of both installations is to separate the grain from the spike using resonance phenomena.


2012 ◽  
Vol 166-169 ◽  
pp. 1517-1520
Author(s):  
Wen Sheng Li ◽  
Kai Wang

In order to study on the flexural performances of beams strengthened with external bonded carbon fiber reinforced polymer(CFRP)sheets, nonlinear analysis is carried out by using software ANSYS. The results show that a reasonable finite element model, using a reasonable solution strategy can be a good simulation of CFRP flexural performance of reinforced concrete beams, and finite element analysis results with the experimental results have good consistency .The beams reinforced by carbon fiber polymer,the capacity of flexural resistance increased with the numbers of carbon fiber paste sheets, reinforced components of flexural capacity significantly improved, but the extent of its increase is not proportional with the numbers of carbon fiber paste sheets.


2013 ◽  
Vol 554-557 ◽  
pp. 1045-1054 ◽  
Author(s):  
Welf Guntram Drossel ◽  
Reinhard Mauermann ◽  
Raik Grützner ◽  
Danilo Mattheß

In this study a numerical simulation model was designed for representing the joining process of carbon fiber-reinforced plastics (CFRP) and aluminum alloy with semi-tubular self-piercing rivet. The first step towards this goal is to analyze the piercing process of CFRP numerical and experimental. Thereby the essential process parameters, tool geometries and material characteristics are determined and in finite element model represented. Subsequently the finite element model will be verified and calibrated by experimental studies. The next step is the integration of the calibrated model parameters from the piercing process in the extensive simulation model of self-piercing rivet process. The comparison between the measured and computed values, e.g. process parameters and the geometrical connection characteristics, shows the reached quality of the process model. The presented method provides an experimental reliable characterization of the damage of the composite material and an evaluation of the connection performances, regarding the anisotropic property of CFRP.


2008 ◽  
Vol 45 (2) ◽  
pp. 196-209 ◽  
Author(s):  
Pascal Villard ◽  
Laurent Briançon

Construction of road and railway platforms in areas subject to localized sinkholes requires the use of specific reinforcements, for example, geosynthetics. The current design method for these structures is based on the assumption that there is no displacement of the geosynthetic in the anchorage areas on either side of the cavity. A new analytical method is proposed that takes into account the displacements and deformation of the geosynthetic reinforcement in the anchorage areas and the increase in stress at the edge of the cavity. To validate this new analytical method, a full-scale experiment was carried out; the use of optical fibre sensors integrated into the geosynthetic sheet made it possible to accurately measure the strain of the geosynthetic reinforcement. Comparison of the results obtained by this new analytical method with measurements of a full-scale experiment and the results of a finite element model confirmed the relevance of these new developments.


Author(s):  
Kim-Niklas Antin ◽  
Anssi Laukkanen ◽  
Tom Andersson ◽  
Danny Smyl ◽  
Pedro Vilaça

A multiscale modelling approach was developed in order to estimate the effect of defects on the strength of unidirectional carbon fiber composites. The work encompasses a micromechanics approach, where the known reinforcement and matrix properties are experimentally verified and a 3D finite element model is meshed directly from micrographs. Boundary conditions for loading the micromechanical model are derived from macroscale finite element simulations of the component in question. Using a microscale model based on the actual microstructure, material parameters and load case allows realistic estimation of the effect of a defect. The modelling approach was tested with a unidirectional carbon fiber composite beam, from which the micromechanical model was created and experimentally validated. The effect of porosity was simulated using a resin-rich area in the microstructure and the results were compared to experimental work on samples containing pores.


2011 ◽  
Vol 66-68 ◽  
pp. 715-720 ◽  
Author(s):  
Jin Feng Zhang ◽  
Lian Chun Long

In order to predict the size and shape of the laser ablative hole, a 3D finite element model was developed to simulate the Nd:YAG laser ablation of carbon fiber epoxy composite. For given irradiation conditions, good agreement with experimental data relating to hole dimensions. The numerical results and experimental observations indicate that with the irradiation time increasing, the domain under investigation temperature raises rapidly and the further to the spot center, the smaller the temperature raises. After 0.093s the target surface temperature is higher than the critical temperature of composite, so the removal of the material on first composite layer occurs. It also can be observed that heat energy of the laser spread within the material and the isotherm ribbon, as well as crater border, is step-like.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1885 ◽  
Author(s):  
Kim-Niklas Antin ◽  
Anssi Laukkanen ◽  
Tom Andersson ◽  
Danny Smyl ◽  
Pedro Vilaça

A multiscale modelling approach was developed in order to estimate the effect of defects on the strength of unidirectional carbon fiber composites. The work encompasses a micromechanics approach, where the known reinforcement and matrix properties are experimentally verified and a 3D finite element model is meshed directly from micrographs. Boundary conditions for loading the micromechanical model are derived from macroscale finite element simulations of the component in question. Using a microscale model based on the actual microstructure, material parameters and load case allows realistic estimation of the effect of a defect. The modelling approach was tested with a unidirectional carbon fiber composite beam, from which the micromechanical model was created and experimentally validated. The effect of porosity was simulated using a resin-rich area in the microstructure and the results were compared to experimental work on samples containing pores.


Sign in / Sign up

Export Citation Format

Share Document