scholarly journals Analisis Daya Dukung Lateral pada Suction Pile dengan Menggunakan Metode Numerik. (Hal. 96-106)

2019 ◽  
Vol 5 (2) ◽  
pp. 96
Author(s):  
R. Thasyia Puteri Dearini J ◽  
Indra Noer Hamdhan

ABSTRAKSuction Pile merupakan fondasi berbentuk silinder baja berdiameter besar yang tertutup pada bagian atas dan terbuka pada bagian bawah. Fondasi ini sering digunakan untuk menyokong bangunan offshore dan platforms. Beban yang diterima oleh suction pile merupakan beban aksial yang berasal dari beban strukturnya dan juga beban lateral dari tekanan tanah dan air laut di sekelilingnya. Analisis daya dukung lateral pada suction pile dilakukan dengan menggunakan metode numerik, yaitu menggunakan software PLAXIS 3D dengan soil model Mohr-Coulomb dan Hardening Soil, serta menggunakan metode analisis, yaitu metode COM624 dari Federal Highway Administrasion (FHWA). Pemodelan suction pile dilakukan dengan cara memvariasikan panjang dari suction pile dengan mutu baja, diameter suction pile, dan parameter tanah yang sama. Berdasarkan hasil dari penelitian bahwa semakin panjang penampang dari suction pile yang digunakan, maka daya dukung lateral yang diperoleh semakin meningkat dikarenakan letak titik jepit yang masih berubah.Kata Kunci: suction pile, daya dukung lateral, titik jepit, Mohr-Coulomb, Hardening Soil ABSTRACTSuction pile is a large cylinder-shaped steel foundation which has a closed top and an open bottom. This foundation is often used to support offshore buildings and platforms. The loads resisted by the suction pile are the axial load from its own structure weight and the lateral load caused by soil and deep-sea pressure around it. Analysis of lateral bearing capacity of suction pile is done by using numerical method is conducted using commercial software PLAXIS 3D, with Mohr-Coulomb and Hardening Soil as the soil model and analysis method is conducted using COM624 method from Federal Highway Administrasion (FHWA). Suction pile model is designed by varying the suction pile lengths of equal steel quality, suction pile diameter, and soil parameter. The result of the research showed that the longer the cross section of the suction pile used, the higher its lateral bearing capacity, due to the location of the fixity point is still changed.Keywords: suction pile, lateral bearing capacity, fixity point, Mohr-Coulomb, Hardening Soil.

Author(s):  
Liang Chao ◽  
Liu Run ◽  
Wan Jun ◽  
Guan Pei ◽  
Li Xiangyun

In order to meet the development need of small-scale marginal oilfield, it is proposed to use the riser and surface casing to bear the loads replacing or partially replacing the steel pipe pile foundation. In this paper, the vertical bearing behavior of variable cross-section composite pile with the diameter of upper part larger than that of lower part (composed of riser and surface casing) is analyzed by finite element method. Then, the influences of different length combinations and diameter combinations of the composite pile on vertical bearing mechanism are studied, and the characteristics of stress concentration at the variable cross-section are revealed. The calculation results show that the increase in pile diameter, pile length and diameter ratio can effectively improve the bearing capacity of riser composite piles. The vertical ultimate bearing capacity of riser composite piles is greatly affected by upper part and less affected by lower part. The bearing capacity of lower part is gradually exerted, as the plastic zone appears at the end of the upper part, meanwhile, the Q-s curve shows as a broken line, which means that a larger pile top settlement is needed in order to effectively activate the bearing capacity of lower part.


2011 ◽  
Vol 243-249 ◽  
pp. 431-437
Author(s):  
Tie Cheng Wang ◽  
Xuan Chen

Making use of the numerical analysis method, the bearing capacity of reinforced concrete column with Z-shaped cross-section subjected to biaxial eccentric compression was analyzed in this paper. Some factors affecting the ultimate bearing capacity of Z-shaped reinforced concrete column were studied, such as loading angle, ratio of axial compression, reinforced ratio, concrete strength and reinforcement arrangement in the limb. It is shown that the worst loading angle was near the second center bisector, the bearing capacity can be improved by enhance reinforced ratio, rebar strength or concrete strength, and the reinforcement arrangement in the limb had little effect on the bearing capacity.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Junpeng Zhou ◽  
Jun Yuan ◽  
Xuefeng Huang ◽  
Xueming Wang

Root pile (hereafter called RP), which is a promising new type of noncircular cross-section-shaped pile and meets the requirements of the development of the uplift pile, was introduced for promotion. On the basis of validation of experimental and numerical results, finite element models were established to study the influence of the arrangement of roots and dimension parameters on the uplift bearing capacity and the economy of RP compared with that of the straight-shaft pile and pedestal pile (hereafter called SP and PP, respectively). The results show that the uplift bearing capacity of RP is higher than that of SP and PP, and the longer the pile length is, the more the bearing capacity of RP would increase compared with that of SP and PP. In order to further improve the bearing capacity of RP, the bearing mechanism of the root was analysed, and the suggested values of root size and spacing of layers are given. In addition, the most economical way to increase pile bearing capacity is to increase pile length rather than increasing pile diameter.


2014 ◽  
Vol 580-583 ◽  
pp. 464-468
Author(s):  
Xin Quan Wang ◽  
Shi Min Zhang ◽  
Juan Liao ◽  
Ying Sheng Huang

Precast thin-wall steel and spun concrete composite pile (TSC pile) is a kind of new type of steel-concrete composite pile whose bearing performance is between steel pile and concrete pile. This article adopted FEM software to set up 3D TSC pile model to analyze its performance. Through the comparison with actual pure bending bearing experiment results, the model’s reliability was verified and the results showed that the model was reliable. Then lots of bending bearing capacity contrast calculations were conducted by using different cross section parameters (outside diameter, concrete pipe’s wall thickness and steel pipe’s wall thickness), and the influences of these parameters on bending resistance of TSC pile were discussed. The results showed that: with the increase of outside diameter, concrete pipe’s wall thickness and steel pipe’s wall thickness, TSC pile’s ultimate flexural bearing capacity increased. The influences of different parameters were not the same, outside diameter was the most important parameter, then concrete pipe’s wall thickness, and the last one was steel pipe’s wall thickness.


Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
М. П. Нажуев

Состояние проблемы. Железобетонные элементы изготавливаются, как правило, по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что реализуется лишь в вибрированных колоннах. Результаты. В рамках диаграммного подхода предложены итерационный, приближенный и упрощенный способы расчета несущей способности железобетонных вибрированных, центрифугированных и виброцентрифугированных колонн. Выводы. Расчет по диаграммному подходу показал существенно более подходящую сходимость с опытными данными, чем расчет по методике норм, а также дал лучшие результаты при использовании дифференциальных характеристик бетона, чем при использовании интегральных и, тем более, нормативных характеристик бетона. Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed. Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.


2021 ◽  
Vol 28 (1) ◽  
pp. 139-152
Author(s):  
Teng Huang ◽  
Dongdong Zhang ◽  
Yaxin Huang ◽  
Chengfei Fan ◽  
Yuan Lin ◽  
...  

Abstract In this study, the flexural bearing capacity and failure mechanism of carbon fiber-reinforced aluminum laminate (CARALL) beams with a double-channel cross-section and a 3/2 laminated configuration were experimentally and numerically studied. Two types of specimens using different carbon fiber layup configurations ([0°/90°/0°]3 and [45°/0°/−45°]3) were fabricated using the pressure molding thermal curing forming process. The double-channel CARALL beams were subjected to static three-point bending tests to determine their failure behaviors in terms of ultimate bearing capacity and failure modes. Owing to the shortcomings of the two-dimensional Hashin failure criterion, the user-defined FORTRAN subroutine VUMAT suitable for the ABAQUS/Explicit solver and an analysis algorithm were established to obtain a progressive damage prediction of the CFRP layer using the three-dimensional Hashin failure criterion. Various failure behaviors and mechanisms of the CARALL beams were numerically analyzed. The results indicated that the numerical simulation was consistent with the experimental results for the ultimate bearing capacity and final failure modes, and the failure process of the double-channel CARALL beams could be revealed. The ultimate failure modes of both types of double-channel CARALL beams were local buckling deformation at the intersection of the upper flange and web near the concentrated loading position, which was mainly caused by the delamination failure among different unidirectional plates, tension and compression failure of the matrix, and shear failure of the fiber layers. The ability of each fiber layer to resist damage decreased in the order of 90° fiber layer > 0° fiber layer > 45° fiber layer. Thus, it is suggested that 90°, 0°, and 45° fiber layers should be stacked for double-channel CARALL beams.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Hadianti Muhdinar Pasaribu

Banyaknya pembangunan infrastruktur yang merupakan salah satu tolak ukur kemajuan suatu daerah menyebabkan terjadinya penyempitan lahan didaerah tersebut. Sehingga pemanfaatan ruang dan lahan sangat dibutuhkan untuk menunjang kemajuan pesatnya pembangunan infrastruktur. Salah satu inovasi terbaik dalam mengatasi masalah keterbatasan lahan adalah membuat bangunan bawah tanah sehingga memberi ruang yang lebih untuk pembangunan. Pembangunan yang cukup terbaru di Indonesia saat ini adalah pembangunan MRT (Mass Rapid Transit) yang dilakukan di Jakarta. Pembangunan ini dalam pelaksanaannya membutuhkan proses konstruksi terowongan (tunneling) dan galian dalam untuk tiap stasiunnya. Pada penelitian ini, penulis terpusat terhadap masalah galian dalam pada stasiun Senayan dari proyek konstruksi MRT Jakarta. Permasalahan terbesar dalam suatu pekerjaan galian dalam adalah adanya deformasi lateral pada dinding bangunan bawah tanah dalam hal ini yang digunakan adalah dinding diafragma (D-Wall) dan juga adanya penurunan tanah disekitar galian. Oleh karena itu, perlu dilakukan pengecekan agar tidak terjadi keruntuhan. Metode konstruksi yang digunakan pada stasiun Senayan adalah metode konstruksi Top-Down. Pada penelitian ini dilakukan analisis deformasi horizontal dan penurunan tanah menggunakan software Plaxis 3D dengan dua pemodelan tanah, yaitu model tanah Mohr Coulomb dan Hardening Soil. Hasil deformasi horizontal yang diperoleh menggunakan model tanah Hardening Soil lebih mendekati  monitoring dilapangan dibandingkan dengan model tanah Mohr-Coulomb. Penelitian ini berfokus pada bagian-bagian tepi pada dinding diafragma melengkapi jurnal sebelumnya yang berfokus pada titik tengah dari dinding diafragma. Besarnya deformasi horizontal pada tahap akhir galian (penimbunan kembali tanah hingga dasar muka tanah) di titik P#80 (di tepi dinding diafragma) tercatat pada monitoring inclinometer sebesar 4.15 mm, dan deformasi yang dihasilkan menggunakan model Hardening Soil sebesar 9.57 mm sedangkan  menggunakan model Mohr-Coulomb sebesar 16.05 mm. Hasil deformasi horizontal yang diperoleh menggunakan model tanah Hardening Soil lebih mendekati  monitoring dilapangan dibandingkan dengan model tanah Mohr-Coulomb meskipun hasil yang diperoleh cukup jauh dari monitoring dilapangan.  Kata Kunci : Galian Dalam, Deformasi Horizontal, Model Mohr Coulomb, Model Hardening Soil, Plaxis 3D  The number of infrastructure development which is one of the benchmarks of the progress of a region causes the narrowing of land in the area. So that the utilization of space and land is needed to support the rapid progress of infrastructure development. One of the best innovations in overcoming the problem of land limitations is to make the underground building giving more space for development. The most recent development in Indonesia today is the construction of MRT (Mass Rapid Transit) conducted in Jakarta. This development in its implementation requires tunneling and deep trenching process for each station. In this study, the authors centered on the deep trenching problems at the Senayan station from the Jakarta MRT construction project. The biggest problem in a deep trenching work is the lateral deformation of underground building walls in this case which is used diaphragm wall (D-Wall) and also the decrease of soil around the excavation. Therefore, it is necessary to check to avoid collapse. The construction method used in Senayan station is a Top-Down construction method. In this research, horizontal deformation and soil degradation analysis using Plaxis 3D software with two soil modeling, Mohr Coulomb and Hardening Soil soil model. The result of the horizontal deformation obtained using Soil Hardening Soil model is closer to monitoring the field compared to the Mohr-Coulomb soil model. This study focuses on the edges of the diaphragm wall complementing the previous journal focusing on the midpoint of the diaphragm wall. The magnitude of the horizontal deformation at the final stages of excavation (backfill) to P # 80 (on the edge of the diaphragm wall) was recorded in inclinometer monitoring of 4.15 mm, and the resulting deformation using the Hardening Soil model of 9.57 mm while using the Mohr model -Coulomb of 16.05 mm. The horizontal deformation results obtained using the Soil Hardening Soil model is closer to the field monitoring than the Mohr-Coulomb soil model although the results obtained are quite far from the field monitoring.Keywords: Deep Excavation, Horizontal Deformation, Mohr Coulomb Model, Hardening Soil Model, Plaxis 3D.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhanzhan Tang ◽  
Zhixiang He ◽  
Zheng Chen ◽  
Lingkun Chen ◽  
Hanyang Xue ◽  
...  

For an RC beam, the strength of steel rebar, the bonding strength between the concrete and reinforcement, and the bite action between the aggregates will deteriorate significantly due to corrosion. In the present study, 10 RC beams were designed to study the impact of corrosion on the shear bearing capacity. The mechanism of corrosion for stirrups and longitudinal bars and their effects were analyzed. Based on the existing experimental data, the correlation between the stirrup corrosion factor and the cross section loss rate was obtained. An effective prediction formula on the shear bearing capacity of the corroded RC beams was proposed and validated by the experimental results. Moreover, a numerical analysis approach based on the FE technique was proposed for the prediction of the shear strength. The results show that corrosion of the reinforcements could reduce the shear strength of the RC beams. The corrosion of stirrups can be numerically simulated by the reduction of the cross section. The formulae in the literature are conservative and the predictions are very dispersed, while the predictions by the proposed formula agree very well with the experiment results.


2011 ◽  
Vol 101-102 ◽  
pp. 897-900 ◽  
Author(s):  
Can Huang ◽  
Yi Gan ◽  
Ji Tao Du ◽  
Cheng Zhan Chen ◽  
Qi Jun Chen

Tailor rolled blanks (TRB) is made by flexible rolling system. And the thickness of TRB can be determined according to the load of this section. With its good bearing capacity and designed, it can be used to make automotive body for reducing the material and lower the weight. This paper describes the rolling process of TRB, and rolling simulation model of TRB was constructed using Deform-3D. The result curve of TRB rolling simulation was compared with a given target curve to determine the TRB rolling implementation, and had a simple analysis about the factors of each cross section during rolling. This research will give a guidance to realize the rolling of TRB.


2015 ◽  
Vol 37 (3) ◽  
pp. 49-52 ◽  
Author(s):  
Adam Krasiński ◽  
Tomasz Kusio

Abstract Ordinary pile bearing capacity tests are usually carried out to determine the relationship between load and displacement of pile head. The measurement system required in such tests consists of force transducer and three or four displacement gauges. The whole system is installed at the pile head above the ground level. This approach, however, does not give us complete information about the pile-soil interaction. We can only determine the total bearing capacity of the pile, without the knowledge of its distribution into the shaft and base resistances. Much more information can be obtained by carrying out a test of instrumented pile equipped with a system for measuring the distribution of axial force along its core. In the case of pile model tests the use of such measurement is difficult due to small scale of the model. To find a suitable solution for axial force measurement, which could be applied to small scale model piles, we had to take into account the following requirements: - a linear and stable relationship between measured and physical values, - the force measurement accuracy of about 0.1 kN, - the range of measured forces up to 30 kN, - resistance of measuring gauges against aggressive counteraction of concrete mortar and against moisture, - insensitivity to pile bending, - economical factor. These requirements can be fulfilled by strain gauge sensors if an appropriate methodology is used for test preparation (Hoffmann [1]). In this paper, we focus on some aspects of the application of strain gauge sensors for model pile tests. The efficiency of the method is proved on the examples of static load tests carried out on SDP model piles acting as single piles and in a group.


Sign in / Sign up

Export Citation Format

Share Document