scholarly journals Influência de lineamentos estruturais no desencadeamento dos movimentos de massa no maciço de Uruburetama, Ceará

2020 ◽  
Vol 13 (3) ◽  
pp. 1294
Author(s):  
Eduardo Viana Freires ◽  
Cláudio Ângelo da Silva Neto ◽  
Cynthia Romariz Duarte ◽  
César Ulisses Vieira Veríssimo ◽  
Daniel Dantas Moreira Gomes ◽  
...  

A disposição de estruturas geológicas em áreas planálticas é elemento importante na compreensão da dinâmica que ocorre na superfície de suas encostas e que é responsável pela esculturação do relevo. Neste contexto destacam-se os movimentos gravitacionais, que podem gerar perdas econômicas, ambientais e humanas em eventos de alta energia e/ou com grande extensão. Esta pesquisa analisou a influência de lineamentos estruturais no desencadeamento dos movimentos gravitacionais no maciço de Uruburetama, localizado no estado do Ceará. A metodologia consistiu na extração automática de lineamentos a partir do Modelo Digital de Elevação (MDE) fornecido pelo sensor orbital ALOS PALSAR. A partir da média de filtros direcionais aplicados a 0°, 45°, 90° e 135° de iluminação foi possível realçar as feições lineares da imagem original, facilitando sua extração. Posteriormente, foram elaborados mapas de distribuição espacial e densidade de lineamentos, além de diagrama de roseta. Tais produtos subsidiaram a análise da disposição dos principais trends estruturais da área, destacando que a maior densidade e a orientação predominante de lineamentos podem ser indicativas do grau de susceptibilidade à ocorrência de movimentos de massa no maciço de Uruburetama, desde que também sejam consideradas as características físicas dominantes e o grau de intervenção humana nas encostas. Os resultados demonstraram que os lineamentos estruturais obtidos de forma automática, quando analisados em conjunto com as características ambientais podem ser aplicados na análise de susceptibilidade à ocorrência de movimentos de massa.  Influence of structural lineaments as a trigger of mass movements in the Uruburetama massif, Ceará state, Brazil A B S T R A C TThe geological structures arrangement in plateau areas is an important element in understanding the dynamics that occur on the surface of their slopes and which is responsible for relief sculpting. In this context, gravitational movements stand out, which can generate economic, environmental and human losses in high energy events and / or with large extension. This research analyzed the influence of structural lineaments in the gravitational movements triggering in the Uruburetama massif, located in the state of Ceará. The methodology consisted of automatic extraction of lineaments from the Digital Elevation Model (DEM) provided by the ALOS PALSAR orbital sensor. From the average of directional filters applied at 0°, 45°, 90° and 135° of illumination it was possible to enhance the linear features of the original image, facilitating their extraction. Subsequently, maps of spatial distribution and lineaments density were developed, as well as a rosette diagram. Such products subsidized the analysis of the disposition of the main structural trends of the area, emphasizing that the higher density and the predominant orientation of lineaments may be indicative of the degree of susceptibility to the occurrence of mass movements in the Uruburetama massif, if the dominant physical conditions and the degree of human intervention on the slopes are also considered. The results showed that the structural lineaments obtained automatically, when analyzed together with the environmental characteristics can be applied in the susceptibility analysis to the occurrence of mass movements.Keywords: ALOS PALSAR, directional filters, image fusion, lineaments extraction

2021 ◽  
Vol 13 (14) ◽  
pp. 2810
Author(s):  
Joanna Gudowicz ◽  
Renata Paluszkiewicz

The rapid development of remote sensing technology for obtaining high-resolution digital elevation models (DEMs) in recent years has made them more and more widely available and has allowed them to be used for morphometric assessment of concave landforms, such as valleys, gullies, glacial cirques, sinkholes, craters, and others. The aim of this study was to develop a geographic information systems (GIS) toolbox for the automatic extraction of 26 morphometric characteristics, which include the geometry, hypsometry, and volume of concave landforms. The Morphometry Assessment Tools (MAT) toolbox in the ArcGIS software was developed. The required input data are a digital elevation model and the form boundary as a vector layer. The method was successfully tested on an example of 21 erosion-denudation valleys located in the young glacial area of northwest Poland. Calculations were based on elevation data collected in the field and LiDAR data. The results obtained with the tool showed differences in the assessment of the volume parameter at the average level of 12%, when comparing the field data and LiDAR data. The algorithm can also be applied to other types of concave forms, as well as being based on other DEM data sources, which makes it a universal tool for morphometric evaluation.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Benjamin Wullobayi Dekongmen ◽  
Amos Tiereyangn Kabo-bah ◽  
Martin Kyereh Domfeh ◽  
Emmanuel Daanoba Sunkari ◽  
Yihun Taddele Dile ◽  
...  

AbstractFloods in Ghana have become a perennial challenge in the major cities and communities located in low-lying areas. Therefore, cities and communities located in these areas have been classified as potential or natural flood-prone zones. In this study, the Digital Elevation Model (DEM) of the Accra Metropolis was used to assess the drainage density and elevation patterns of the area. The annual population estimation data and flood damages were assessed to understand the damages and population trend. This research focused primarily on the elevation patterns, slope patterns, and drainage density of the Accra Metropolis. Very high drainage density values, which range between 149 and 1117 m/m2, showed very high runoff converging areas. High drainage density was also found to be in the range of 1117–1702 m/m2, which defined the area as a high runoff converging point. The medium and low converging points of runoff were also found to be ranging between 1702–2563 m/m2 and 2563–4070 m/m2, respectively. About 32% of the study area is covered by natural flood-prone zones, whereas flood-prone zones also covered 33% and frequent flood zones represent 25%. Areas in the Accra Metropolis that fall in the Accraian and Togo series rock types experience high floods. However, the lineament networks (geological structures) that dominate the Dahomeyan series imply that the geological structures in the Dahomeyan series also channel the runoffs into the low-lying areas, thereby contributing to the perennial flooding in the Accra Metropolis.


2021 ◽  
Vol 5 (1) ◽  
pp. 11-21
Author(s):  
Sangay Gyeltshen ◽  
Krisha Kumar Subedi ◽  
Laylo Zaridinova Kamoliddinovna ◽  
Jigme Tenzin

The study assessed the accuracies of globally available Digital Elevation Models (DEM’s) i.e., SRTM v3, ASTER GDEM v2 and ALOS PALSAR DEM with respect to Topo-DEM derived from topographic map of 5m contour interval. 100 ground control points of the elevation data were collected with the help of kinematic hand held GNSS (Global Navigation Satellite System), randomly distributed over the study area. The widely used RMSE statistic, NCC correlation and sub-pixel-based approach were applied to evaluate the erroneous, correlation, horizontal and vertical displacement in terms of pixels for the individual Digital Elevation Model. Following these evaluations, SRTM DEM was found to be highly accurate in terms of RMSE and displacement compared to other DEMs. This study is intended to provide the researchers, GIS specialists and the government agencies dealing with remote sensing and GIS, a basic clue on accuracy of the DEMs so that the best model can be selected for application on various purposes of the similar region.


Author(s):  
R. Mangla ◽  
S. Kumar

A digital elevation model (DEM) is a 3D visualization of a terrain surface. It can be used in various analytical studies such as topographic feature extraction, hydrology, geomorphology and landslides analysis etc. Uttrakhand region is affected with landslides, earthquake and flash flood phenomenon. Hence this study was focused on DEM generation using Differential SAR Interferometry (DINSAR) on ALOS PALSAR dataset. Two Pass DINSAR technique involves one interferometric pair in addition with an external DEM. The external DEM was used as a reference to reduce topographic errors. The data processing steps were image co-registration, interferogram generation, interferogram flattening (Differential Interferogram), interferogram filtering, coherence map, phase unwrapping, orbital refinement and re-flattening and DEM generation. Interferogram fringes observed in forest areas were due to temporal decorrelation and the fringes in mountain regions were obtained due to topography changes (may be due to landslides in rainy season). The range of elevation in generated DEM were 132 m to 2823 m and Root Mean Square Error (RMSE) error was 36.765159 m. The generated DEM was compared with ASTER DEM and variation in height was analyzed. Atmospheric effects were not removed due to geometrical and temporal decorrelation which affect the accuracy.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 585
Author(s):  
Mehdi Honarmand ◽  
Hadi Shahriari

In this research, drone-based photogrammetry was utilized for mapping geology with the objective of mineral exploration in the Shahzadeh Abbas Cu deposit, Kerman province, Iran. Cu mineralization is of vein-type and follows geological structures. A low-cost drone was used to collect geological data. A spatial resolution of 3.26 cm was achieved by considering a flight altitude of 70 m. To reach the accuracy of less than 5 cm, 70% lateral and 80% front image overlaps were applied and 220 temporary ground control points (TGCPs) were used in an area of 2.02 km2. TGCPs were accurately positioned using DGPS-RTK measurements. Agisoft PhotoScan software was used for photogrammetric processing. The orthophoto product was performed for outlining geological units through visual interpretation. The digital elevation model (DEM) was converted to a hill-shade model in ArcGIS software to extract the geological structures such as faults and dikes. A draft geology map was prepared using orthophoto and hill-shade images to minimize the time and cost of the subsequent field work. Rock sampling was carried out and Cu-bearing veins were specified through field investigations. The geology map was finalized based on field work data and petrology studies. The geological survey indicated that diabase dikes with a northwest–southeast strike often host Cu mineralization in the study area. The position of Cu-bearing dikes was delineated for the next stage of the exploration program. This research demonstrated the time- and cost-effectiveness of using drone-based photogrammetry for preparing base geology maps for the exploration of vein-type mineralization in far districts with rough topography.


2020 ◽  
Author(s):  
Trida Ridho Fariz ◽  
Nur Rokhayati

Salah satu data penginderaan jauh yang penting adalah DEM (Digital Elevation Model). Data DEM memberikan informasi ketinggian suatu permukaan bumi dimana dikelompokkan menjadi 2 yaitu DSM (Digital Surface Model) yang menyajikan informasi ketinggian permukaan tutupan lahan dan DTM (Digital Terrain Model) yang menyajikan informasi ketinggian tanah. Pemetaan banjir rob secara umum menggunakan data DTM. Tetapi untuk mendapatkan data DTM sangatlah sulit. Salah satu data DEM yang tersedia secara gratis adalah data DEM terkoreksi hasil ekstraksi dari ALOS PALSAR yang memiliki resolusi spasial 12,5 meter, tidak terlalu bagus untuk digunakan sebagai data untuk pemetaan genangan banjir rob mengingat itu hanyalah DSM. Sedangkan menggunakan data titik ketinggian yang di interpolasi tidak terlalu merepresentatifkan kondisi ketinggian medan suatu wilayah kecuali jika jumlah titiknya banyak. Penelitian ini menggunakan metode slope based filtering untuk mengkonversi data DEM dari ALOS PALSAR menjadi DTM.Hasil dari metode ini dilakukan uji statistik berupa korelasi dengan data titik ketinggian dan mempunyai nilai korelasi yang sangat tinggi yaitu sebesar 0,80 dan nilai RMSE sebesar 1,402. Selanjutnya dibuat pemodalan spasial genangan banjir rob dari DTM. Hasil pemodelan spasial genanngan banjir rob kemudin diuji akurasi dengan uji statistik korelasi dan penghitungan RMSE dengan data hasil survey lapangan. Hasil pemodelan memiliki korelasi sebesar 0,78 dengan nilai RMSE tinggi genangan banjir rob sebesar 0,763. Yang berarti bahwa rata-rata selisih nilai ketinggian genangan banjir rob dari peta dan dilapangan adalah sebesar 0,763m. Wilayah genangan banjir rob meliputi Desa Jeruksari, Desa Tegaldowo, Desa Mulyorejo dan Desa Karangjompo.


2013 ◽  
Vol 1 (3) ◽  
pp. 1799-1822
Author(s):  
C. Zhao ◽  
Q. Zhang ◽  
Y. Yin ◽  
Z. Lu ◽  
C. Yang ◽  
...  

Abstract. On 5 June 2009, a catastrophic rockslide debris flow occurred at the crest of the Jiweishan range, Chongqing Municipality, China, killing 74 people and injuring an additional eight. We use L-band ALOS/PALSAR imagery to address landslide processes before, during and after the slide. We employ three different SAR methods, i.e. short baseline subsets (SBAS) interferometric SAR (InSAR), SAR backscattering intensity change, and InSAR stacking algorithm, to study any ground deformation before the rockslide, investigate the affected area, and calculate the topographic change by this slide, respectively. First, continuous deformation has been observed based on the available ALOS/PALSAR InSAR imagery during June and December 2007. Second, the area affected by the landslide can be inferred based on changes in SAR backscattering intensity as well as surface topography, with an estimated area of 0.47 million m2. Last, an InSAR-derived post-slide digital elevation model has allowed us to estimate surface height changes due to the slide, reaching about -80 m at the source region and about 60 m in the deposit region, respectively. Our InSAR-derived estimates have been validated using in-situ data and 3-D LiDAR measurements. The proposed procedures for rockslide analysis with satellite SAR imagery over a remote, mountainous, heavily vegetated region can be further extended to similar geo-hazards investigation and monitoring.


2005 ◽  
Vol 5 (2) ◽  
pp. 285-292 ◽  
Author(s):  
M.-H. Derron ◽  
M. Jaboyedoff ◽  
L. H. Blikra

Abstract. The increasing availability and precision of digital elevation model (DEM) helps in the assessment of landslide prone areas where only few data are available. This approach is performed in 6 main steps which include: DEM creation; identification of geomorphologic features; determination of the main sets of discontinuities; mapping of the most likely dangerous structures; preliminary rock-fall assessment; estimation of the large instabilities volumes. The method is applied to two the cases studies in the Oppstadhornet mountain (730m alt): (1) a 10 millions m3 slow-moving rockslide and (2) a potential high-energy rock falling prone area. The orientations of the foliation and of the major discontinuities have been determined directly from the DEM. These results are in very good agreement with field measurements. Spatial arrangements of discontinuities and foliation with the topography revealed hazardous structures. Maps of potential occurrence of these hazardous structures show highly probable sliding areas at the foot of the main landslide and potential rock falls in the eastern part of the mountain.


2019 ◽  
Vol 30 ◽  
pp. 15010
Author(s):  
Andrey Sosnovsky ◽  
Victor Kobemichenko

The experimental study of the efficiency of interferometric data processing algorithms for synthetic aperture space radars is complicated by the fact that a quantitative result can be obtained only after the completion of the entire technological chain. The efficiency of the first stages of interferometric processing - incoherent accumulation and suppression of phase noise-has been studied on the basis of the method of inverse transformation of standards previously proposed by the authors. The results of estimation of accuracy of digital elevation model construction for ALOS PALSAR data with different base lengths and polarizations of the probing signal are presented.


Sign in / Sign up

Export Citation Format

Share Document