PECULIARITIES OF USING THE VERTICAL ROTARY CULTIVATOR FOR INTER-ROW SOIL TILLAGE OF RASPBERRY PLANTINGS [

2021 ◽  
pp. 20-24
Author(s):  
VIKTOR N. OZHERELYEV ◽  

When tilling the soil with a vertical-rotary limiter of the raspberry row width, rotating knives perform its transverse transferring. In this regard, it is advisable to fi nd the means to control the process. The study revealed the infl uence of the design parameters of the raspberry row width limiter on the pattern and degree of the lateral displacement of the cross-section of the cultivated soil strip. The authors assessed the intensity of the process of transverse soil redistribution by comparing the positions of the gravity centers of the treated strip cross-section before and after the tillage operation. The studies analyzed medium and heavy loams with a humus content of less than 2.5% and a wide range of variation in moisture content and contamination of the treated strip. With a rotor diameter of about 900 mm, the lateral displacement of the gravity center of the strip cross-section varies within the range of 50…100 mm. The authors found that the lateral displacement control of the soil layer is possible at a constant forward inclination angle of the rotation axis of the knife rotor, which is equal to 18º. This can be done by changing the lateral inclination angle of the specifi ed axis towards the row spacing center in the range between 10 and 20º. As a result, a signifi cant portion of the discarded soil returns to the treated strip surface, minimizing its outside throw-off and eliminating the possibility of injuring the raspberry shoots. The limiter proposed by the authors has a longitudinal baffl e installed at an angle to the vertical with a minimum energy intensity of the process. It helps to maintain the cross-section of the surface of the row spacing of raspberries in a leveled state throughout the entire life of the plantation.possibility of ensuring the maximum propagation range of a non-isothermal supply air jet by angular correction of the fl ow vector at the outlet of the ventilation unit. Based on the theory of free air distribution, the author analyzed and graphically visualized the fl ow trajectories of the supply air from the combined climate control unit with heat recovery in the production room in the range of outdoor temperatures from +10 to –40°C. Given the time period of outdoor temperatures, fl at sections of a three-dimensional graph were built with a step of 10°C in the range from +10 to –30°C. The author found that the maximum service area of the installation is limited by the propagation range of the supply air jet. The area can be increased by changing the direction of the fl ow vector by an angle ranging between 0 and 34°. The value of the inclination angle of the fl ow vector of the supply air jet is determined by the obtained approximation dependency. Considering the regulation of the fl ow vector, the author used the formula of M.Z. Pechatnikov to determine the propagation range of a limited axisymmetric jet. The studies carried out made it possible to establish the relationship between the propagation range of the supply air jet of the installation and the outside temperature, the inclination angle of the fl ow vector, and the theoretical variation range of the inclination angle of the fl ow vector, ranging between 0 and 34°.

2013 ◽  
Vol 433-435 ◽  
pp. 2277-2281
Author(s):  
Quan Wei Wang ◽  
Ming Hui Wang ◽  
Dong Li ◽  
Dian Mao Wan ◽  
Rong Meng

By analyzing the relationship of the design parameters of NYD contact backstop, the cross-section curve of the wedge block has been discussed as Archimedes spiral, logarithm spiral and arc. Each curve is designed optimally using MATLAB optimization toolbox. The merits and drawbacks of each curve are discussed.


2020 ◽  
Vol 8 (6) ◽  
pp. 4973-4977

The building norms and standards of Uzbekistan on the reinforced concrete structures do not regulate the design of hollow-core slabs of formwork-free shaping, reinforced with prestressed wire reinforcement. The manufacturing technology of such slabs allows creating a wide range of products that increase the possibility of their use in various structural systems in residential, civil and industrial buildings, but in non-seismic areas only. The aim of this work is to develop a constructive solution for the cross section of a prestressed hollow-core floor slab of bench formwork-free shaping, reinforced with high-strength wire reinforcement, in order to create a wide range of products intended for construction in seismic areas. To achieve the goal, the problem of determining the optimal combination of height and configuration parameters of the cross section of such a slab is solved, meeting the normalized operational requirements and limitations of earthquake-resistant building standards. The main variable parameters are the height and the void degree of the section, characterized by the size and shape of voids. In calculating the cross-section of a hollow-core slab when substantiating the theoretical basis for the calculation, the cross section is reduced to the equivalent I-section. As a result of research, a constructive solution was developed for the slab cross section of the maximum parameter values (the span, operational load) set by the customer. The parameters of the slab cross-section are: the height 190 mm, the hollowness 38%, the height of the upper thickened flange (compared with the height of the lower flange) of the given section is 0.27h, the height of the lower flange is 0.17h, the reduced (total) thickness of all ribs “b” is 0.32 of the width of the upper flange. The voids in the section along the height of the slab are arranged asymmetrically. A patent for a utility model has been received for the proposed constructive solution of the slab cross section.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4523 ◽  
Author(s):  
Jian Du ◽  
Li Wang ◽  
Yanbin Shi ◽  
Feng Zhang ◽  
Shiheng Hu ◽  
...  

The CNT-PDMS composite has been widely adopted in flexible devices due to its high elasticity, piezoresistivity, and biocompatibility. In a wide range of applications, CNT-PDMS composite sensors were used for resistive strain measurement. Accordingly, the percolation threshold 2%~4% of the CNT weight ratio in the CNT-PDMS composite was commonly selected, which is expected to achieve the optimized piezoresistive sensitivity. However, the linear range around the percolation threshold weight ratio (2%~4%) limits its application in a stable output of large strain (>20%). Therefore, comprehensive understanding of the electromechanical, mechanical, and electrical properties for the CNT-PDMS composite with different CNT weight ratios was expected. In this paper, a systematic study was conducted on the piezoresistivity, Young’s modulus, conductivity, impedance, and the cross-section morphology of different CNT weight ratios (1 to 10 wt%) of the CNT-PDMS composite material. It was experimentally observed that the piezo-resistive sensitivity of CNT-PDMS negatively correlated with the increase in the CNT weight ratio. However, the electrical conductivity, Young’s modulus, tensile strength, and the linear range of piezoresistive response of the CNT-PDMS composite positively correlated with the increase in CNT weight ratio. Furthermore, the mechanism of these phenomena was analyzed through the cross-section morphology of the CNT-PDMS composite material by using SEM imaging. From this analysis, a guideline was proposed for large strain (40%) measurement applications (e.g., motion monitoring of the human body of the finger, arm, foot, etc.), the CNT weight ratio 8 wt% was suggested to achieve the best piezoresistive sensitivity in the linear range.


2021 ◽  
pp. 11-16
Author(s):  
Rusudan Golyatina ◽  
Sergei Maiorov

Consideration is given to the analysis of data on the cross sections of elastic and inelastic col-lisions of electrons with noble gas atoms. The transport (diffusion) cross section, the excita-tion and ionization cross sections are studied. For the selected sets of experimental and theo-retical data, optimal analytical formulas are found and approximation coefficients are select-ed for them. The obtained semi-empirical formulas allow us to reproduce the cross section values in a wide range of collision energies from 0.001 to 10000 eV with an accuracy of sev-eral percent.


The cross-section shape and proportionality between geometrical dimensions are the most important design parameters of any lifting surfaces. These parameters affect the amount of the aerodynamic forces that will be generated. In this study, the focus is placed on the snake-cross-section airfoil known as the S-airfoil. It is found that there is a lack of available researches on S-airfoil despite its important characteristics. A parametric study on empty model of the S-airfoil with a cross-section shape that is inspired by the Chrysopelea paradise snake is conducted through numerical simulation. Simulation using 2D-ANSYS FLUENT17 software is used to generate the lift and drag forces to determine the performance of airfoil aerodynamic. Based on the results, the S-airfoil can be improved in performance of aerodynamic by reducing the thickness at certain range, whereby changing the thickness-to-chord ratio from 0.037 to 0.011 results in the increment of lift-to-drag ratio from 2.629 to 3.257. On other hand, increasing the height-to-chord ratio of the S-airfoil will increase maximum lift coefficient but drawback is a wide range of angles of attack regarding maximum lift-to-drag ratio. Encouraging results obtained in this study draws attention to the importance of expanding the research on S-airfoil and its usage, especially in wind energy.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1242
Author(s):  
Hiroshi Yamashita ◽  
Takeshi Akinaga ◽  
Masako Sugihara-Seki

The continuous separation and filtration of particles immersed in fluid flows are important interests in various applications. Although the inertial focusing of particles suspended in a duct flow is promising in microfluidics, predicting the focusing positions depending on the parameters, such as the shape of the duct cross-section and the Reynolds number (Re) has not been achieved owing to the diversity of the inertial-focusing phenomena. In this study, we aimed to elucidate the variation of the inertial focusing depending on Re in rectangular duct flows. We performed a numerical simulation of the lift force exerted on a spherical particle flowing in a rectangular duct and determined the lift-force map within the duct cross-section over a wide range of Re. We estimated the particle trajectories based on the lift map and Stokes drag, and identified the particle-focusing points appeared in the cross-section. For an aspect ratio of the duct cross-section of 2, we found that the blockage ratio changes transition structure of particle focusing. For blockage ratios smaller than 0.3, particles focus near the centres of the long sides of the cross-section at low Re and near the centres of both the long and short sides at relatively higher Re. This transition is expressed as a subcritical pitchfork bifurcation. For blockage ratio larger than 0.3, another focusing pattern appears between these two focusing regimes, where particles are focused on the centres of the long sides and at intermediate positions near the corners. Thus, there are three regimes; the transition between adjacent regimes at lower Re is found to be expressed as a saddle-node bifurcation and the other transition as a supercritical pitchfork bifurcation.


2021 ◽  
Vol 51 ◽  
pp. 96-111
Author(s):  
Vasily Sergeevich Zakharov ◽  
Mikhail Evgenievich Zhukovskiy ◽  
Sergey Vasilievich Zakharov ◽  
Mikhail Borisovich Markov

Data on processes of electron scattering on ions and neutral atoms are required in fundamental studies and in applied research in such fields as astro- and laser physics, low density plasma simulations, kinetic modeling etc. Experimental and computational data on elastic and inelastic electron scattering in a wide range of electron energies is available mostly for the electron interaction with neutral atoms, but are very limited for the scattering on ions, notably for elastic processes. In present work the calculational approaches for the cross-section computation of electron elastic and inelastic scattering on neutral atoms and ions are considered. The atomic and ion properties obtained in quantum-statistical Hartree-Fock-Slater model are used in the direct computation of electron elastic scattering and ionization cross-sections by a partial waves method, semiclassical and distorted-wave approximations. Calculated cross-sections for elastic scattering on nitrogen and oxygen atoms and ions, and electron ionisation cross-sections are compared with the available experimental data and widely used approximations and propose consistent results. Considering applicability of Hartree-Fock-Slater model in wide scope of temperatures and densities, such approach to the cross-section calculation can be used in a broad range of energies and ion charges.


Author(s):  
Ashraf O. Nassef ◽  
Hesham A. Hegazi ◽  
Sayed M. Metwalli

Abstract C-frames constitute a large portion of machine tools that are currently used in industry. Examples of these frames include drilling machines, presses, punching and stamping machines, clamps, hooks, etc. The design parameters of these frames include the dimensions of their cross-sections, which should be chosen to withstand the applied loads and minimize the element’s overall weight. Traditionally, the cross-section of C-frame belonged to a set of primitive shapes, which included I, T, trapezoidal and rectangular sections. This paper introduces a new methodology for designing the frame’s cross-section. The cross-sectional shape is represented using non-uniform rational B-Spline (NURBS) in order to give it a form of shape flexibility. A special form of genetic algorithms known as real-coded genetic algorithms is used to conduct the search for the design objectives. Real-coded genetic algorithms are known to outperform the simple binary representation genetic algorithms when dealing with continuous search spaces. The results showed that the optimal shape was a semi I/T-section with the material bulk related to the applied load.


According to the vortex theory of matter, atoms consist of vortex rings in an infinite perfect liquid, the æther. These rings may be either hollow or filled with otating liquid. The cross section of the hollow or rotating core is in the simplest ase small and the ring is circular. Such vortices have been investigated. It has been hown that they can exist, and that they are stable for certain types of deformation, in this paper the stability of the hollow vortex ring is investigated further, with a view to proving that it is stable for all small deformations of its surface. An attempt also made to make the vortex theory of matter agree with the kinetic theory of ases as regards the relation between the velocity and the energy of an atom. On he latter theory the energy of an atom varies as the square of its velocity, while on he former theory the energy decreases as the velocity increases. As the two theories liffer on a fundamental point, while the consequences of the kinetic theory agree over wide range with experiment, those of the vortex theory are likely to be in discrepancy therewith. However, no account has been taken of the electric change which an atom must hold if electrolysis is to be explained. This electrification will evidently alter the relation between the energy and the velocity. The nature of the change thus produced is here discussed for the case of a hollow vortex, the surface of which behaves as a conductor of electricity, a representation which is dynamically realised by the theory of a rotationally-elastic fluid æther developed in Mr. Larmor’s paper, “A Dynamical Theory of the Electric and Luminiferous Medium.” The small oscillations also are worked out with a view to the discussion of the stability of an electrified vortex. 2. The velocity of translation of the vortex in its steady motion is constant and perpendicular to its plane. By impressing on the whole liquid a velocity equal and opposite to this, the hollow is reduced to rest. Since the cross section of the hollow is small, any small length of it may be regarded as cylindrical. A cylindrical vortex must, by reason of symmetry, have its cross section a circle, so that the cross section of the hollow of the annular vortex is approximately circular, and the hollow itself approximately a tore.


Author(s):  
Nicolas Savary ◽  
Thibaud Aupoix ◽  
Patrick Duchaine ◽  
Guillaume Cottin

Effusion cooling is one of the most widespread system used to cool combustion chamber liners nowadays: it is efficient, cheap and light. Effusion cooling consists of drilling thousands of submillimetric holes into the combustor wall in order to cool it down from inside the holes and create a cooling film inside the combustor protecting it from the hot gases. Effusion cooling has long time been very challenging for combustor simulations because it involves lengthscales ranging from ½ millimeter (about the size of the effusion holes) to ½ meter (about the diameter of the combustor). That is one of the main reasons for which 3D simulations of effusion cooling has long been inaccessible, and has generated the studies presented in this paper. This study will focus on the effusion cooling holes discharge coefficient evaluation as a function of numerous aerothermal and design parameters. Many attempts to describe aerodynamically effusion have occurred, mainly based on experiments exploring few of the parameters mentioned above. But none of these studies tried to elaborate a model able to handle most of them. This is the purpose of this study which will set up a 3D model able to describe finely the physical phenomena involved in combustor effusion cooling holes and the influence of the design parameters available to combustor engineers on these phenomena. The strategy which prevails in the setup of the numerical 3D detailed model is to find a compromise between the reliability and the CPU cost of the simulation. Indeed the objective is to study the influence of a wide range of effusion cooling design parameters such as hole diameter, orientation, shape, etc. . . on the effective cross section. In addition, for a better understanding of the physical phenomena, all the simulations are performed at the same aerothermal conditions. These aerothermal conditions as blowing ratio, cooling temperature, pressure are not design parameters of effusion cooled walls. They are usually imposed by the gas turbine thermodynamic cycle very early in the development of a new engine. A preliminary study allowed to select the parameters which were both the least known and the most influential on the effusion hole mass flowrate according to literature, preexisting numerical and experimental databases. More than 60 new CFD simulations have been performed and show the influence of each effusion cooling design parameter taken separately: effusion holes inclination, orientation and taper angle. A mesh sensitivity study has been performed in order to validate the numerical approach. Then, the analysis of both the preexisting data and this new numerical database showed that some of the design parameters have strong effects and coupled influences on the mass flow rate through the holes. On the other hand, some other parameters could be easily described by simple models or even neglected. This study concludes by quantifying the improvement of a proprietary effective cross section correlation of effusion cooled walls, based on the analysis mentioned in this study.


Sign in / Sign up

Export Citation Format

Share Document