scholarly journals Assessment of Future Climate Change Projections Using Multiple Global Climate Models

2019 ◽  
Vol 5 (10) ◽  
pp. 2152-2166 ◽  
Author(s):  
Han Thi Oo ◽  
Win Win Zin ◽  
Cho Cho Thin Kyi

Nowadays, the hydrological cycle which alters river discharge and water availability is affected by climate change. Therefore, the understanding of climate change is curial for the security of hydrologic conditions of river basins. The main purpose of this study is to assess the projections of future climate across the Upper Ayeyarwady river basin for its sustainable development and management of water sector for this area. Global Ten climate Models available from CMIP5 represented by the IPCC for its fifth Assessment Report were bias corrected using linear scaling method to generate the model error. Among the GCMs, a suitable climate model for each station is selected based on the results of performance indicators (R2 and RMSE). Future climate data are projected based on the selected suitable climate models by using future climate scenarios: RCP2.6, RCP4.5, and RCP8.5. According to this study, future projection indicates to increase in precipitation amounts in the rainy and winter season and diminishes in summer season under all future scenarios. Based on the seasonal temperature changes analysis for all stations,  the future temperature are  predicted to steadily increase with higher rates during summer than the other two seasons and it can also be concluded that the monthly minimum temperature rise is a bit larger than the maximum temperature rise in all seasons.

2016 ◽  
Vol 48 (5) ◽  
pp. 1327-1342 ◽  
Author(s):  
Spyridon Paparrizos ◽  
Andreas Matzarakis

Assessment of future variations of streamflow is essential for research regarding climate and climate change. This study is focused on three agricultural areas widespread in Greece and aims to assess the future response of annual and seasonal streamflow and its impacts on the hydrological regime, in combination with other fundamental aspects of the hydrological cycle in areas with different climate classification. ArcSWAT ArcGIS extension was used to simulate the future responses of streamflow. Future meteorological data were obtained from various regional climate models, and analysed for the periods 2021–2050 and 2071–2100. In all the examined areas, streamflow is expected to be reduced. Areas characterized by continental climate will face minor reductions by the mid-century that will become very intense by the end and thus these areas will become more resistant to future changes. Autumn season will face the strongest reductions. Areas characterized by Mediterranean conditions will be very vulnerable in terms of future climate change and winter runoff will face the most significant decreases. Reduced precipitation is the main reason for decreased streamflow. High values of actual evapotranspiration by the end of the century will act as an inhibitor towards reduced runoff and partly counterbalance the water losses.


Climate ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Suzanna Meeussen ◽  
Anouschka Hof

Climate change is expected to have an impact on the geographical distribution ranges of species. Endemic species and those with a restricted geographic range may be especially vulnerable. The Persian jird (Meriones persicus) is an endemic rodent inhabiting the mountainous areas of the Irano-Turanian region, where future desertification may form a threat to the species. In this study, the species distribution modelling algorithm MaxEnt was used to assess the impact of future climate change on the geographic distribution range of the Persian jird. Predictions were made under two Representative Concentration Pathways and five different climate models for the years 2050 and 2070. It was found that both bioclimatic variables and land use variables were important in determining potential suitability of the region for the species to occur. In most cases, the future predictions showed an expansion of the geographic range of the Persian jird which indicates that the species is not under immediate threat. There are however uncertainties with regards to its current range. Predictions may therefore be an over or underestimation of the total suitable area. Further research is thus needed to confirm the current geographic range of the Persian jird to be able to improve assessments of the impact of future climate change.


2017 ◽  
Vol 30 (17) ◽  
pp. 6701-6722 ◽  
Author(s):  
Daniel Bannister ◽  
Michael Herzog ◽  
Hans-F. Graf ◽  
J. Scott Hosking ◽  
C. Alan Short

The Sichuan basin is one of the most densely populated regions of China, making the area particularly vulnerable to the adverse impacts associated with future climate change. As such, climate models are important for understanding regional and local impacts of climate change and variability, like heat stress and drought. In this study, climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are validated over the Sichuan basin by evaluating how well each model can capture the phase, amplitude, and variability of the regionally observed mean, maximum, and minimum temperature between 1979 and 2005. The results reveal that the majority of the models do not capture the basic spatial pattern and observed means, trends, and probability distribution functions. In particular, mean and minimum temperatures are underestimated, especially during the winter, resulting in biases exceeding −3°C. Models that reasonably represent the complex basin topography are found to generally have lower biases overall. The five most skillful climate models with respect to the regional climate of the Sichuan basin are selected to explore twenty-first-century temperature projections for the region. Under the CMIP5 high-emission future climate change scenario, representative concentration pathway 8.5 (RCP8.5), the temperatures are projected to increase by approximately 4°C (with an average warming rate of +0.72°C decade−1), with the greatest warming located over the central plains of the Sichuan basin, by 2100. Moreover, the frequency of extreme months (where mean temperature exceeds 28°C) is shown to increase in the twenty-first century at a faster rate compared to the twentieth century.


2006 ◽  
Vol 2 (2) ◽  
pp. 145-165 ◽  
Author(s):  
V. Masson-Delmotte ◽  
G. Dreyfus ◽  
P. Braconnot ◽  
S. Johnsen ◽  
J. Jouzel ◽  
...  

Abstract. Ice cores provide unique archives of past climate and environmental changes based only on physical processes. Quantitative temperature reconstructions are essential for the comparison between ice core records and climate models. We give an overview of the methods that have been developed to reconstruct past local temperatures from deep ice cores and highlight several points that are relevant for future climate change. We first analyse the long term fluctuations of temperature as depicted in the long Antarctic record from EPICA Dome C. The long term imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and VI published in 2004 corresponds to a phasing of the obliquity signals. A conjunction of low obliquity and minimum northern hemisphere summer insolation is not found in the next tens of thousand years, supporting the idea of an unusually long interglacial ahead. As a second point relevant for future climate change, we discuss the magnitude and rate of change of past temperatures reconstructed from Greenland (NorthGRIP) and Antarctic (Dome C) ice cores. Past episodes of temperatures above the present-day values by up to 5°C are recorded at both locations during the penultimate interglacial period. The rate of polar warming simulated by coupled climate models forced by a CO2 increase of 1% per year is compared to ice-core-based temperature reconstructions. In Antarctica, the CO2-induced warming lies clearly beyond the natural rhythm of temperature fluctuations. In Greenland, the CO2-induced warming is as fast or faster than the most rapid temperature shifts of the last ice age. The magnitude of polar temperature change in response to a quadrupling of atmospheric CO2 is comparable to the magnitude of the polar temperature change from the Last Glacial Maximum to present-day. When forced by prescribed changes in ice sheet reconstructions and CO2 changes, climate models systematically underestimate the glacial-interglacial polar temperature change.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Miyuru B. Gunathilake ◽  
Yasasna V. Amaratunga ◽  
Anushka Perera ◽  
Imiya M. Chathuranika ◽  
Anura S. Gunathilake ◽  
...  

Water resources in Northern Thailand have been less explored with regard to the impact on hydrology that the future climate would have. For this study, three regional climate models (RCMs) from the Coordinated Regional Downscaling Experiment (CORDEX) of Coupled Model Intercomparison Project 5 (CMIP5) were used to project future climate of the upper Nan River basin. Future climate data of ACCESS_CCAM, MPI_ESM_CCAM, and CNRM_CCAM under Representation Concentration Pathways RCP4.5 and RCP8.5 were bias-corrected by the linear scaling method and subsequently drove the Hydrological Engineering Center-Hydrological Modeling System (HEC-HMS) to simulate future streamflow. This study compared baseline (1988–2005) climate and streamflow values with future time scales during 2020–2039 (2030s), 2040–2069 (2050s), and 2070–2099 (2080s). The upper Nan River basin will become warmer in future with highest increases in the maximum temperature of 3.8°C/year for MPI_ESM and minimum temperature of 3.6°C/year for ACCESS_CCAM under RCP8.5 during 2080s. The magnitude of changes and directions in mean monthly precipitation varies, with the highest increase of 109 mm for ACESSS_CCAM under RCP 4.5 in September and highest decrease of 77 mm in July for CNRM, during 2080s. Average of RCM combinations shows that decreases will be in ranges of −5.5 to −48.9% for annual flows, −31 to −47% for rainy season flows, and −47 to −67% for winter season flows. Increases in summer seasonal flows will be between 14 and 58%. Projection of future temperature levels indicates that higher increases will be during the latter part of the 20th century, and in general, the increases in the minimum temperature will be higher than those in the maximum temperature. The results of this study will be useful for river basin planners and government agencies to develop sustainable water management strategies and adaptation options to offset negative impacts of future changes in climate. In addition, the results will also be valuable for agriculturists and hydropower planners.


2014 ◽  
Vol 5 (1) ◽  
pp. 617-647
Author(s):  
Y. Yin ◽  
Q. Tang ◽  
X. Liu

Abstract. Climate change may affect crop development and yield, and consequently cast a shadow of doubt over China's food self-sufficiency efforts. In this study we used the model projections of a couple of global gridded crop models (GGCMs) to assess the effects of future climate change on the potential yields of the major crops (i.e. wheat, rice, maize and soybean) over China. The GGCMs were forced with the bias-corrected climate data from 5 global climate models (GCMs) under the Representative Concentration Pathways (RCP) 8.5 which were made available by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The results show that the potential yields of rice may increase over a large portion of China. Climate change may benefit food productions over the high-altitude and cold regions where are outside current main agricultural area. However, the potential yield of maize, soybean and wheat may decrease in a large portion of the current main crop planting areas such as North China Plain. Development of new agronomic management strategy may be useful for coping with climate change in the areas with high risk of yield reduction.


2019 ◽  
Vol 25 ◽  
pp. 63-70
Author(s):  
Torsten Haberzettl ◽  
Gerhard Daut ◽  
Nora Schulze ◽  
Volkhard Spiess ◽  
Junbo Wang ◽  
...  

Abstract. The Tibetan Plateau is of peculiar societal relevance as it provides freshwater from the so-called “Water Tower of Asia” to a large portion of the Asian population. However, future climate change will affect the hydrological cycle in this area. To define parameters for future climate change scenarios it is necessary to improve the knowledge about thresholds, timing, pace and intensity of past climatic changes and associated environmental impacts. Sedimentary archives reaching far back in time and spanning several glacial–interglacial cycles such as Nam Co provide the unique possibility to extract such information. In order to explore the scientific opportunities that an ICDP drilling effort at Nam Co would provide, 40 scientists from 13 countries representing various scientific disciplines met in Beijing from 22 to 24 May 2018. Besides paleoclimatic investigations, opportunities for paleomagnetic, deep biosphere, tectonic and paleobiological studies were discussed. After having explored the technical and logistical challenges and the scientific opportunities all participants agreed on the great value and need to drill this extraordinary archive, which has a sediment thickness of more than 1 km, likely covering more than 1 Ma.


2021 ◽  
Author(s):  
Charles Williams ◽  
Daniel Lunt ◽  
Alistair Sellar ◽  
William Roberts ◽  
Robin Smith ◽  
...  

<p>To better understand the processes contributing to future climate change, palaeoclimate model simulations are an important tool because they allow testing of the models’ ability to simulate very different climates than that of today.  As part of CMIP6/PMIP4, the latest version of the UK’s physical climate model, HadGEM3-GC31-LL (hereafter, for brevity, HadGEM3), was recently used to simulate the mid-Holocene (~6 ka) and Last Interglacial (~127 ka) simulations and the results were compared to the preindustrial era, previous versions of the same model and proxy data (see Williams et al. 2020, Climate of the Past).  Here, we use the same model to go further back in time, presenting the results from the mid-Pliocene Warm Period (~3.3 to 3 ma, hereafter the “Pliocene” for brevity).  This period is of particular interest when it comes to projections of future climate change under various scenarios of CO<sub>2</sub> emissions, because it is the most recent time in Earth’s history when CO<sub>2</sub> levels were roughly equivalent to today.  In response, albeit due to slower mechanisms than today’s anthropogenic fossil fuel driven-change, during the Pliocene global mean temperatures were 2-3°C higher than today, more so at the poles.</p><p> </p><p>Here, we present results from the HadGEM3 Pliocene simulation.  The model is responding to the Pliocene boundary conditions in a manner consistent with current understanding and existing literature.  When compared to the preindustrial era, global mean temperatures are currently ~5°C higher, with the majority of warming coming from high latitudes due to polar amplification from a lack of sea ice.  Relative to other models within the Pliocene Modelling Intercomparison Project (PlioMIP), this is the 2<sup>nd</sup> warmest model, with the majority of others only showing up to a 4.5°C increase and many a lot less.  This is consistent with the relatively high sensitivity of HadGEM3, relative to other CMIP6-class models.  When compared to a previous generation of the same UK model, HadCM3, similar patterns of both surface temperature and precipitation changes are shown (relative to preindustrial).  Moreover, when the simulations are compared to proxy data, the results suggest that the HadGEM3 Pliocene simulation is closer to the reconstructions than its predecessor.</p>


Sign in / Sign up

Export Citation Format

Share Document