scholarly journals Topology Optimization by the use of 3D Printing Technology in the Product Design Process

2020 ◽  
Vol 1 (4) ◽  
pp. 161-171
Author(s):  
Ioannis Ntintakis ◽  
Georgios Eleftherios Stavroulakis ◽  
Niki Plakia

The designing process of a new product includes various stages, one of which is the evaluation of an idea thought prototype manufacturing. The use of additive manufacturing consists the most efficient and effective way for prototype manufacturing. In order to maximize the benefits from the use of additive manufacturing, we should choose the suitable printing parameters. A vital parameter for defining the quantity of raw material used and the model solidity is the inner wall thickness. Depending on the selected technique of additive manufacturing, the thickness of the inner wall may differ. In this study we initially print furniture models with different wall thicknesses using the Inject Binder technique and then we check their durability and resilience by compression tests. Evaluating the study results indicate the hollow printed specimens have high durability during compression tests and can be used to evaluate a design idea. Using the facts derived from lab tests we perform Topology Optimization studies under different circumstances to evaluate the method and come up with the optimal design solution. Initially, the Topology Optimization study concern only the table surface and not the whole model. The following studies were performed for the whole model, different constraints and load cases defined. Then, the optimized models are redesigned in order to improve their durability. The performed studies show that Topology Optimization is a powerful tool, which is able to support the designers/ engineers to take the right decision during the design process. Doi: 10.28991/HIJ-2020-01-04-03 Full Text: PDF

2021 ◽  
Vol 11 (17) ◽  
pp. 7834
Author(s):  
Abas Ahmad ◽  
Michele Bici ◽  
Francesca Campana

For the past few decades, topology optimization (TO) has been used as a structural design optimization tool. With the passage of time, this kind of usage of TO has been extended to many application fields and branches, thanks to a better understanding of how manufacturing constraints can achieve a practical design solution. In addition, the advent of additive manufacturing and its subsequent advancements have further increased the applications of TO, raising the chance of competitive manufacturing. Design for additive manufacturing has also promoted the adoption of TO as a concept design tool of structural components. Nevertheless, the most frequent applications are related to lightweight design with or without design for assembly. A general approach to integrate TO in concept designs is still missing. This paper aims to close this gap by proposing guidelines to translate design requirements into TO inputs and to include topology and structural concerns at the early stage of design activity. Guidelines have been applied for the concept design of an inner supporting frame of an ancient bronze statue, with several constraints related to different general design requirements, i.e., lightweight design, minimum displacement, and protection of the statue’s structural weak zones to preserve its structural integrity. Starting from the critical analysis of the list of requirements, a set of concepts is defined through the application of TO with different set-ups (loads, boundary conditions, design and non-design space) and ranked by the main requirements. Finally, a validation of the proposed approach is discussed comparing the achieved results with the ones carried out through a standard iterative concept design.


2020 ◽  
Vol 15 (55) ◽  
pp. 119-135
Author(s):  
Felipe Fiorentin ◽  
Bernardo Oliveira ◽  
João Pereira ◽  
José Correia ◽  
Abilio M.P. de Jesus ◽  
...  

The main goal of the present research is to propose an integrated methodology to address the fatigue performance of topology optimized components, produced by additive manufacturing. The main steps of the component design will be presented, specially the methods and parameters applied to the topology optimization and the post-smoothing process. The SIMP method was applied in order to obtain a lighter component and a suitable stiffness for the desired application. In addition, since residual stresses are intrinsic to every metallic additive manufacturing process, the influence of those stresses will be also analyzed. The Laser Powder Bed Fusion was numerically simulated aiming at evaluating the residual stresses the workpiece during the manufacturing process and to investigate how they could influence the fatigue behavior of the optimized component. The effect of the built orientation of the workpiece on the residual stresses at some selected potential critical points are evaluated. The final design solution presented a stiffness/volume ratio nearly 6 times higher when compared to the initial geometry. By choosing the built orientation, it is possible impact favorably in the fatigue life of the component.


2021 ◽  
Vol 13 (14) ◽  
pp. 8013
Author(s):  
William Patrick Ryan-Johnson ◽  
Larson Curtis Wolfe ◽  
Christopher Roder Byron ◽  
Jacquelyn Kay Nagel ◽  
Hao Zhang

Bioinspired design has been applied in sustainable design (e.g., lightweight structures) to learn from nature and support material structure functionalities. Natural structures usually require modification in practice because they were evolved in natural environmental conditions that can be different from industrial applications. Topology optimization is a method to find the optimal design solution by considering the material external physical environment. Therefore, integrating topology optimization into bioinspired design can benefit sustainable material structure designers in meeting the purpose of using bioinspired concepts to find the optimal solution in the material functional environment. Current research in both sustainable design and materials science, however, has not led to a method to assist material structure designers to design structures with bioinspired concepts and use topology optimization to find the optimal solution. Systems thinking can seamlessly fill this gap and provide a systemic methodology to achieve this goal. The objective of this research is to develop a systems approach that incorporates topology optimization into bioinspired design, and simultaneously takes into consideration additive manufacturing processing conditions to ensure the material structure functionality. The method is demonstrated with three lightweight material structure designs: spiderweb, turtle shell, and maze. Environmental impact assessment and finite element analysis were conducted to evaluate the functionality and emissions of the designs. This research contributes to the sustainable design knowledge by providing an innovative systems thinking-based bioinspired design of material structures. In addition, the research results enhance materials knowledge with an understanding of mechanical properties of three material structures: turtle shell, spiderweb, and maze. This research systemically connects four disciplines, including bioinspired design, manufacturing, systems thinking, and lightweight structure materials.


Author(s):  
Konstantin Aal ◽  
Anne Weibert ◽  
Kai Schubert ◽  
Mary-Ann Sprenger ◽  
Thomas Von Rekowski

The case study presented in this chapter discusses the design and implementation of an online platform, “come_NET,” in the context of intercultural computer clubs in Germany. This tool was built in close cooperation with the children and adult computer club participants. It was designed to foster the sharing of ideas and experiences across distances, support collaboration, and make skills and expertise accessible to others in the local neighborhood contexts. In particular, the participatory-design process involving the children in the computer clubs fostered a profound understanding of the platform structure and functionalities. The study results show how younger children in particular were able to benefit, as the closed nature of the platform enabled them to gather experience as users of social media, but in a safe and controlled environment.


2021 ◽  
Vol 18 (4) ◽  
pp. 857-871
Author(s):  
Elio Matteo Curcio ◽  
Giuseppe Carbone

AbstractThis paper addresses the design of a novel bionic robotic device for upper limb rehabilitation tasks at home. The main goal of the design process has been to obtain a rehabilitation device, which can be easily portable and can be managed remotely by a professional therapist. This allows to treat people also in regions that are not easily reachable with a significant cost reduction. Other potential benefits can be envisaged, for instance, in the possibility to keep social distancing while allowing rehabilitation treatments even during a pandemic spread. Specific attention has been devoted to design the main mechatronic components by developing specific kinematics and dynamics models. The design process includes the implementation of a specific control hardware and software. Preliminary experimental tests are reported to show the effectiveness and feasibility of the proposed design solution.


2021 ◽  
Vol 1 ◽  
pp. 2571-2580
Author(s):  
Filip Valjak ◽  
Angelica Lindwall

AbstractThe advent of additive manufacturing (AM) in recent years have had a significant impact on the design process. Because of new manufacturing technology, a new area of research emerged – Design for Additive Manufacturing (DfAM) with newly developed design support methods and tools. This paper looks into the current status of the field regarding the conceptual design of AM products, with the focus on how literature sources treat design heuristics and design principles in the context of DfAM. To answer the research question, a systematic literature review was conducted. The results are analysed, compared and discussed on three main points: the definition of the design heuristics and the design principles, level of support they provide, as well as where and how they are used inside the design process. The paper highlights the similarities and differences between design heuristics and design principles in the context of DfAM.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 877
Author(s):  
Masoud Abbaszadeh ◽  
Volker Ventzke ◽  
Leonor Neto ◽  
Stefan Riekehr ◽  
Filomeno Martina ◽  
...  

Increasing demand for producing large-scale metal components via additive manufacturing requires relatively high building rate processes, such as wire + arc additive manufacturing (WAAM). For the industrial implementation of this technology, a throughout understanding of material behaviour is needed. In the present work, structures of Ti-6Al-4V, AA2319 and S355JR steel fabricated by means of WAAM were investigated and compared with respect to their mechanical and microstructural properties, in particular under compression loading. The microstructure of WAAM specimens is assessed by scanning electron microscopy, electron back-scatter diffraction, and optical microscopy. In Ti-6Al-4V, the results show that the presence of the basal and prismatic crystal planes in normal direction lead to an anisotropic behaviour under compression. Although AA2319 shows initially an isotropic plastic behaviour, the directional porosity distribution leads to an anisotropic behaviour at final stages of the compression tests before failure. In S355JR steel, isotropic mechanical behaviour is observed due to the presence of a relatively homogeneous microstructure. Microhardness is related to grain morphology variations, where higher hardness near the inter-layer grain boundaries for Ti-6Al-4V and AA2319 as well as within the refined regions in S355JR steel is observed. In summary, this study analyzes and compares the behaviour of three different materials fabricated by WAAM under compression loading, an important loading condition in mechanical post-processing techniques of WAAM structures, such as rolling. In this regard, the data can also be utilized for future modelling activities in this direction.


Sign in / Sign up

Export Citation Format

Share Document