scholarly journals MODELING LEMMA FREQUENCY BANDS FOR LEXICAL COMPLEXITY ASSESSMENT OF RUSSIAN TEXTS

Author(s):  
O. V. Blinova ◽  
◽  
N. A. Tarasov ◽  
V. V. Modina ◽  
I. S. Blekanov ◽  
...  

The paper is devoted to the problem of modeling general-language frequency using data of large Russian corpora. Our goal is to develop a methodology for forming a consolidated frequency list which in the future can be used for assessing lexical complexity of Russian texts. We compared 4 frequency lists developed from 4 corpora (Russian National Corpus, ruTenTen11, Araneum Russicum III Maximum, Taiga). Firstly, we applied rank correlation analysis. Secondly, we used the measures “coverage” and “enrichment”. Thirdly, we applied the measure “sum of minimal frequencies”. We found that there are significant differences between the compared frequency lists both in ranking and in relative frequencies. The application of the “coverage” measure showed that frequency lists are by no means substitutable. Therefore, none of the corpora in question can be excluded when compiling a consolidated frequency list. For a more detailed comparison of frequency lists for different frequency bands, the ranked frequency list, based on RNC data, was divided into 4 equal parts. Then 4 random samples (containing 20 lemmas from each quartile) were formed. Due to the wide range of values, accepted by ipm measure, relative frequency values are difficult to interpret. In addition, there are no reliable thresholds separating high-frequency, mid-frequency, and low-frequency lemmas. Meanwhile, to assess the lexical complexity of texts, it is useful to have a convenient way of distributing lemmas with certain frequencies over the bands of the frequency list. Therefore, we decided to assign lemmas “Zipf-values”, which made the frequency data interpretable because the range of measure values is small. The result of our work will be a publicly accessible reference resource called “Frequentator”, which will allow to obtain interpretable information about the frequency of Russian words.

2002 ◽  
Vol 12 (5) ◽  
pp. 234-240 ◽  
Author(s):  
Karim Bekkour ◽  
Nadia Kherfellah

Abstract Bentonite are extensively used materials in a wide range of applications. Creep and oscillatory shear experiments in the linear viscoelastic domain were carried out on bentonite-water suspensions at different solid fractions. It was found that bentonite dispersions exhibit important viscoelastic behavior which could be represented by the generalized Kelvin-Voigt mechanical model. It is well known that an exhaustive study of colloidal dispersions may require the determination of its viscoelastic properties over a wide frequency scale. Unfortunately, due to microstructure changes, the experiments are limited in time. In order to avoid such limitation, oscillatory data were deduced from creep curves - without actually vibrating the clay dispersions - because a periodic experiment at frequency ω is qualitatively equivalent to a creep test at time 1/ω. That is, it was possible to complete the dynamic response in the low-frequency range using data obtained from the transient response in creep.


2009 ◽  
Vol 23 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Suzannah K. Helps ◽  
Samantha J. Broyd ◽  
Christopher J. James ◽  
Anke Karl ◽  
Edmund J. S. Sonuga-Barke

Background: The default mode interference hypothesis ( Sonuga-Barke & Castellanos, 2007 ) predicts (1) the attenuation of very low frequency oscillations (VLFO; e.g., .05 Hz) in brain activity within the default mode network during the transition from rest to task, and (2) that failures to attenuate in this way will lead to an increased likelihood of periodic attention lapses that are synchronized to the VLFO pattern. Here, we tested these predictions using DC-EEG recordings within and outside of a previously identified network of electrode locations hypothesized to reflect DMN activity (i.e., S3 network; Helps et al., 2008 ). Method: 24 young adults (mean age 22.3 years; 8 male), sampled to include a wide range of ADHD symptoms, took part in a study of rest to task transitions. Two conditions were compared: 5 min of rest (eyes open) and a 10-min simple 2-choice RT task with a relatively high sampling rate (ISI 1 s). DC-EEG was recorded during both conditions, and the low-frequency spectrum was decomposed and measures of the power within specific bands extracted. Results: Shift from rest to task led to an attenuation of VLFO activity within the S3 network which was inversely associated with ADHD symptoms. RT during task also showed a VLFO signature. During task there was a small but significant degree of synchronization between EEG and RT in the VLFO band. Attenuators showed a lower degree of synchrony than nonattenuators. Discussion: The results provide some initial EEG-based support for the default mode interference hypothesis and suggest that failure to attenuate VLFO in the S3 network is associated with higher synchrony between low-frequency brain activity and RT fluctuations during a simple RT task. Although significant, the effects were small and future research should employ tasks with a higher sampling rate to increase the possibility of extracting robust and stable signals.


Author(s):  
John Campbell ◽  
Joey Huston ◽  
Frank Krauss

At the core of any theoretical description of hadron collider physics is a fixed-order perturbative treatment of a hard scattering process. This chapter is devoted to a survey of fixed-order predictions for a wide range of Standard Model processes. These range from high cross-section processes such as jet production to much more elusive reactions, such as the production of Higgs bosons. Process by process, these sections illustrate how the techniques developed in Chapter 3 are applied to more complex final states and provide a summary of the fixed-order state-of-the-art. In each case, key theoretical predictions and ideas are identified that will be the subject of a detailed comparison with data in Chapters 8 and 9.


BMJ Open ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. e047007
Author(s):  
Mari Terada ◽  
Hiroshi Ohtsu ◽  
Sho Saito ◽  
Kayoko Hayakawa ◽  
Shinya Tsuzuki ◽  
...  

ObjectivesTo investigate the risk factors contributing to severity on admission. Additionally, risk factors of worst severity and fatality were studied. Moreover, factors were compared based on three points: early severity, worst severity and fatality.DesignAn observational cohort study using data entered in a Japan nationwide COVID-19 inpatient registry, COVIREGI-JP.SettingAs of 28 September 2020, 10480 cases from 802 facilities have been registered. Participating facilities cover a wide range of hospitals where patients with COVID-19 are admitted in Japan.ParticipantsParticipants who had a positive test result on any applicable SARS-CoV-2 diagnostic tests were admitted to participating healthcare facilities. A total of 3829 cases were identified from 16 January to 31 May 2020, of which 3376 cases were included in this study.Primary and secondary outcome measuresPrimary outcome was severe or nonsevere on admission, determined by the requirement of mechanical ventilation or oxygen therapy, SpO2 or respiratory rate. Secondary outcome was the worst severity during hospitalisation, judged by the requirement of oxygen and/orinvasive mechanical ventilation/extracorporeal membrane oxygenation.ResultsRisk factors for severity on admission were older age, men, cardiovascular disease, chronic respiratory disease, diabetes, obesity and hypertension. Cerebrovascular disease, liver disease, renal disease or dialysis, solid tumour and hyperlipidaemia did not influence severity on admission; however, it influenced worst severity. Fatality rates for obesity, hypertension and hyperlipidaemia were relatively lower.ConclusionsThis study segregated the comorbidities influencing severity and death. It is possible that risk factors for severity on admission, worst severity and fatality are not consistent and may be propelled by different factors. Specifically, while hypertension, hyperlipidaemia and obesity had major effect on worst severity, their impact was mild on fatality in the Japanese population. Some studies contradict our results; therefore, detailed analyses, considering in-hospital treatments, are needed for validation.Trial registration numberUMIN000039873. https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000045453


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 499 ◽  
Author(s):  
Artem Shikhovtsev ◽  
Pavel Kovadlo ◽  
Vladimir Lukin

The paper focuses on the development of the method to estimate the mean characteristics of the atmospheric turbulence. Using an approach based on the shape of the energy spectrum of atmospheric turbulence over a wide range of spatial and temporal scales, the vertical profiles of optical turbulence are calculated. The temporal variability of the vertical profiles of turbulence under different low-frequency atmospheric disturbances is considered.


2021 ◽  
Vol 14 (3) ◽  
pp. 112
Author(s):  
Kai Shi

We attempted to comprehensively decode the connectedness among the abbreviation of five emerging market countries (BRICS) stock markets between 1 August 2002 and 31 December 2019 not only in time domain but also in frequency domain. A continuously varying spillover index based on forecasting error variance decomposition within a generalized abbreviation of vector-autoregression (VAR) framework was computed. With the help of spectral representation, heterogeneous frequency responses to shocks were separated into frequency-specific spillovers in five different frequency bands to reveal differentiated linkages among BRICS markets. Rolling sample analyses were introduced to allow for multiple changes during the sample period. It is found that return spillovers dominated by the high frequency band (within 1 week) part declined with the drop of frequencies, while volatility spillovers dominated by the low frequency band (above 1 quarter) part grew with the decline in frequencies; the dynamics of spillovers were influenced by crucial systematic risk events, and some similarities implied in the spillover dynamics in different frequency bands were found. From the perspective of identifying systematic risk sources, China’s stock market and Russia’s stock market, respectively, played an influential role for return spillover and volatility spillover across BRICS markets.


Author(s):  
Walter Anderson ◽  
Constantine Ciocanel ◽  
Mohammad Elahinia

Engine vibration has caused a great deal of research for isolation to be performed. Traditionally, isolation was achieved through the use of pure elastomeric (rubber) mounts. However, with advances in vehicle technology, these types of mounts have become inadequate. The inadequacy stems from the vibration profile associated with the engine, i.e. high displacement at low frequency and small displacement at high frequency. Ideal isolation would be achieved through a stiff mount for low frequency and a soft mount for high frequency. This is contradictory to the performance of the elastomeric mounts. Hydraulic mounts were then developed to address this problem. A hydraulic mount has variable stiffness and damping due to the use of a decoupler and an inertia track. However, further advances in vehicle technology have rendered these mounts inadequate as well. Examples of these advances are hybridization (electric and hydraulic) and cylinder on demand (VCM, MDS & ACC). With these technologies, the vibration excitation has a significantly different profile, occurs over a wide range of frequencies, and calls for a new technology that can address this need. Magnetorheological (MR) fluid is a smart material that is able to change viscosity in the presence of a magnetic field. With the use of MR fluid, variable damping and stiffness can be achieved. An MR mount has been developed and tested. The performance of the mount depends on the geometry of the rubber part as well as the behavior of the MR fluid. The rubber top of the mount is the topic of this study due to its major impact on the isolation characteristics of the MR mount. To develop a design methodology to address the isolation needs of different hybrid vehicles, a geometric parametric finite element analysis has been completed and presented in this paper.


2021 ◽  
Vol 18 ◽  
Author(s):  
Luoyu Wang ◽  
Qi Feng ◽  
Mei Wang ◽  
Tingting Zhu ◽  
Enyan Yu ◽  
...  

Background: As a potential brain imaging biomarker, amplitude of low frequency fluc-tuation (ALFF) has been used as a feature to distinguish patients with Alzheimer’s disease (AD) and amnestic mild cognitive impairment (aMCI) from normal controls (NC). However, it remains unclear whether the frequency-dependent pattern of ALFF alterations can effectively distinguish the different phases of the disease. Methods: In the present study, 52 AD and 50 aMCI patients were enrolled together with 43 NC in total. The ALFF values were calculated in the following three frequency bands: classical (0.01-0.08 Hz), slow-4 (0.027-0.073 Hz) and slow-5 (0.01-0.027 Hz) for the three different groups. Subsequently, the local functional abnormalities were employed as features to examine the effect of classification among AD, aMCI and NC using a support vector machine (SVM). Results: We found that the among-group differences of ALFF in the different frequency bands were mainly located in the left hippocampus (HP), right HP, bilateral posterior cingulate cortex (PCC) and bilateral precuneus (PCu), left angular gyrus (AG) and left medial prefrontal cortex (mPFC). When the local functional abnormalities were employed as features, we identified that the ALFF in the slow-5 frequency band showed the highest accuracy to distinguish among the three groups. Conclusion: These findings may deepen our understanding of the pathogenesis of AD and suggest that slow-5 frequency band may be helpful to explore the pathogenesis and distinguish the phases of this disease.


2018 ◽  
Vol 7 (3) ◽  
pp. 24-46
Author(s):  
Sourav Paul ◽  
Provas Roy

In this article, an Oppositional Differential search algorithm (ODSA) is comprehensively developed and successfully applied for the optimal design of power system stabilizer (PSS) parameters which are added to the excitation system to dampen low frequency oscillation as it pertains to large power system. The effectiveness of the proposed method is examined and validated on a single machine infinite bus (SMIB) using the Heffron-Phillips model. The most important advantage of the proposed method is as it reaches toward the optimal solution without the optimal tuning of input parameters of the ODSA algorithm. In order to verify the effectiveness, the simulation was made for a wide range of loading conditions. The simulation results of the proposed ODSA are compared with those obtained by other techniques available in the recent literature to demonstrate the feasibility of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document