scholarly journals Implications of Land Use Change on River Flow in South West England

10.29007/75p2 ◽  
2018 ◽  
Author(s):  
Lorena Liuzzo ◽  
Gabriele Freni

Assessing the impacts of future changes in land use on the hydrological cycle is an important issue for the proper management of water resources, since land use changes have implications on both water quantity and quality. Land use changes, in particular the expansion of urban areas, can significantly affect river flow increasing flood risk, whereas, the development of woodland areas could have positive effects on the reduction of peak flow. The present study has been carried out to assess and quantify the impact of land use changes on the water resources of a river basin located in South West England. With this aim, a hydrological model has been applied to some land use scenarios. In particular, two scenarios have been investigated: the first includes the increase of agricultural areas and the decrease of woodlands, the second includes the increase of urban areas and the decrease of woodlands. Results showed that, in the area of study, river flow would likely to be affected by future land use changes, mainly in the case of urban areas increase.

Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 102
Author(s):  
Frauke Kachholz ◽  
Jens Tränckner

Land use changes influence the water balance and often increase surface runoff. The resulting impacts on river flow, water level, and flood should be identified beforehand in the phase of spatial planning. In two consecutive papers, we develop a model-based decision support system for quantifying the hydrological and stream hydraulic impacts of land use changes. Part 1 presents the semi-automatic set-up of physically based hydrological and hydraulic models on the basis of geodata analysis for the current state. Appropriate hydrological model parameters for ungauged catchments are derived by a transfer from a calibrated model. In the regarded lowland river basins, parameters of surface and groundwater inflow turned out to be particularly important. While the calibration delivers very good to good model results for flow (Evol =2.4%, R = 0.84, NSE = 0.84), the model performance is good to satisfactory (Evol = −9.6%, R = 0.88, NSE = 0.59) in a different river system parametrized with the transfer procedure. After transferring the concept to a larger area with various small rivers, the current state is analyzed by running simulations based on statistical rainfall scenarios. Results include watercourse section-specific capacities and excess volumes in case of flooding. The developed approach can relatively quickly generate physically reliable and spatially high-resolution results. Part 2 builds on the data generated in part 1 and presents the subsequent approach to assess hydrologic/hydrodynamic impacts of potential land use changes.


Hydrology ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 17 ◽  
Author(s):  
Sekela Twisa ◽  
Shija Kazumba ◽  
Mathew Kurian ◽  
Manfred F. Buchroithner

Understanding the variation in the hydrological response of a basin associated with land use changes is essential for developing management strategies for water resources. The impact of hydrological changes caused by expected land use changes may be severe for the Wami river system, given its role as a crucial area for water, providing food and livelihoods. The objective of this study is to examine the influence of land use changes on various elements of the hydrological processes of the basin. Hybrid classification, which includes unsupervised and supervised classification techniques, is used to process the images (2000 and 2016), while CA–Markov chain analysis is used to forecast and simulate the 2032 land use state. In the current study, a combined approach—including a Soil and Water Assessment Tool (SWAT) model and Partial Least Squares Regression (PLSR)—is used to explore the influences of individual land use classes on fluctuations in the hydrological components. From the study, it is evident that land use has changed across the basin since 2000 (which is expected to continue in 2032), as well as that the hydrological effects caused by land use changes were observed. It has been found that the major land use changes that affected hydrology components in the basin were expansion of cultivation land, built-up area and grassland, and decline in natural forests and woodland during the study period. These findings provide baseline information for decision-makers and stakeholders concerning land and water resources for better planning and management decisions in the basin resources’ use.


Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 62
Author(s):  
Zahra Kalantari ◽  
Johanna Sörensen

The densification of urban areas has raised concerns over increased pluvial flooding. Flood risk in urban areas might increase under the impact of land use changes. Urbanisation involves the conversion of natural areas to impermeable areas, causing lower infiltration rates and increased runoff. When high-intensity rainfall exceeds the capacity of an urban drainage system, the runoff causes pluvial flooding in low-laying areas. In the present study, a long time series (i.e., 20 years) of geo-referenced flood claims from property owners has been collected and analysed in detail to assess flood risk as it relates to land use changes in urban areas. The flood claim data come from property owners with flood insurance that covers property loss from overland flooding, groundwater intrusion through basement walls, as well as flooding from drainage systems; these data serve as a proxy of flood severity. The spatial relationships between land use change and flood occurrences in different urban areas were analysed. Special emphasis was placed on examining how nature-based solutions and blue-green infrastructure relate to flood risk. The relationships are defined by a statistical method explaining the tendencies whereby land use change affects flood risk.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1790 ◽  
Author(s):  
Muhammad Afzal ◽  
Ragab Ragab

Although the climate change projections are produced by global models, studying the impact of climatic change on water resources is commonly investigated at catchment scale where the measurements are taken, and water management decisions are made. For this study, the Frome catchment in the UK was investigated as an example of midland England. The DiCaSM model was applied using the UKCP09 future climate change scenarios. The climate projections indicate that the greatest decrease in groundwater recharge and streamflow was projected under high emission scenarios in the 2080s. Under the medium and high emission scenarios, model results revealed that the frequency and severity of drought events would be the highest. The drought indices, the Reconnaissance Drought Index, RDI, Soil Moisture Deficit, SMD and Wetness Index, WI, predicted an increase in the severity of future drought events under the high emission scenarios. Increasing broadleaf forest area would decrease streamflow and groundwater recharge. Urban expansion could increase surface runoff. Decreasing winter barley and grass and increasing oil seed rape, would increase SMD and slightly decrease river flow. Findings of this study are helpful in the planning and management of the water resources considering the impact of climate and land use changes on variability in the availability of surface and groundwater resources.


2020 ◽  
Author(s):  
Natasa Ravbar ◽  
Gregor Kovačič ◽  
Metka Petrič

<p>Environmental changes, such as alterations in precipitation and evapotranspiration regimes, changes in vegetation type, etc. are triggering direct impact on hydrological cycle through modified amounts and patterns of recharge conditions, as well as occurrence of more frequent and severe hydrometeorological events. Karst aquifers are particularly vulnerable to these effects due to highly dynamic hydrological processes. In this study, we were interested in studying the possibilities to observe changed hydrological behaviour of karst springs on a human timescale. Therefore, we focused on two examples in Slovenia, both regionally important for freshwater supply, agriculture and hydropower. The Unica spring mostly drains areas under moderate continental climate. Its catchment has been repeatedly and severely hit by natural disasters (e.g., ice break, bark beetle attack, windthrow) after 2014 causing large-scale forest disturbances. The catchment of Rižana spring, on the other hand, belongs to the moderate Submediterranean climate. There these types of disturbance did not occur in recent years (excluding some wildfires), but the catchment has been liable to substantial land use changes in the past six decades. For assessment of vegetation cover changes and large-scale disturbances in forests, historical digital orthophotos of the Surveying and Mapping Authority of the Republic of Slovenia since 1957 have been compared with the recent land use data provided by Ministry of Agriculture, Economy and Food and forest state database of Slovenian Forest Service. At the same time, hydrological data of the Unica (Hasberg gauging station) in the period 1962-2018 and Rižana springs (Kubed gauging station) in the period 1966-2018 and precipitation data from Postojna (period 1962-2018) and Podgrad (period 1966-2018) meteorological stations have been processed. Individual flood pulse events over the 57 years for Unica and 53 years for Rižana have been separated. For each flood pulse various information about precipitation amount and intensity, duration of discharge increase, its intensity and amplitude have been specified. We compared these findings with the calculated trends of meteorological and hydrological variables and also changes in land use. The impact of particular environmental change on discharge values of both springs has been evaluated, showing that both, climate and land-use changes, have considerable impact on hydrological regime of studied karst springs. In particular, altered duration of flood pulses increase, their amplitude and intensity have been observed, meaning that the most important issues of water availability that are crucial for water-dependant economic sectors are under threat.</p>


2013 ◽  
Vol 726-731 ◽  
pp. 4645-4649
Author(s):  
Jia Hua Zhang ◽  
Cui Hao ◽  
Feng Mei Yao

We developed an approach to assess urban land use changes that incorporates socio-economic and environmental factors with multinomial logistic model, remote sensing data and GIS, and to quantify the impact of macro variables on land use of urban areas for the years 1990, 2000 and 2010 in Binhai New Area, China. The Markov transition matrix was designed to integrate with multinomial logistic model to illustrate and visualize the predicted land use surface. The multinomial logistic model was evaluated by means of Likelihood ratio test and Pseudo R-Square and showed a relatively good simulation. The prediction map of 2010 showed accurate rates 78.54%, 57.25% and 70.38%, respectively.


2018 ◽  
Vol 11 (1) ◽  
pp. 399
Author(s):  
Victor H. Moraes ◽  
Pedro R. Giongo ◽  
Marcio Mesquita ◽  
Thomas J. Cavalcante ◽  
Matheus V. A. Ventura ◽  
...  

The change in the use of natural vegetation by annual or perennial crops, sugarcane and fast-growing forests causes changes in the biophysical variables, and these changes can be monitored by remote sensing. The objective of this work was to evaluate, on a temporal scale, the impacts of land use changes on biophysical variables in the county of Santa Helena de Goias-Goias/Brazil. Between the years of 2000 to 2015 areas were identified for agricultural crops 1 (annual crops), water, agricultural crops 2 (sugarcane), natural vegetation, pasture and urban areas. The MODIS (Moderate Resolution Spectroradiometer) sensor products were selected for study: MOD11A2-Surface temperature; MOD16A2-Real evapotranspiration, MOD13Q1-Enhanced Vegetation Index and rainfall data from TRMM (Tropical Rainfall Measuring Mission). The geographic coordinates referring to the land uses were inserted in the LAPIG platform, searching the information of the biophysical variables referring to the selected pixel. The impact of land use change was evaluated by calculating the weighted average through the quantitative classification of the areas. It is concluded for the period of study that the index of average vegetation of the county had increase. There was an increase in the evapotranspiration volume of the county from 28% from 2000 to 2013 and the average surface temperature of the county showed a reduction of 2 °C in the period from 2000 to 2015.


2014 ◽  
Vol 5 (1) ◽  
pp. 281-326 ◽  
Author(s):  
R. J. van der Ent ◽  
L. Wang-Erlandsson ◽  
P. W. Keys ◽  
H. H. G. Savenije

Abstract. The contribution of land evaporation to local and remote precipitation (i.e., moisture recycling) is of significant importance to sustain water resources and ecosystems. But how important are different evaporation components in sustaining precipitation? This is the first paper to present moisture recycling metrics for partitioned evaporation. In the companion paper, Part 1, evaporation was partitioned into vegetation interception, floor interception, soil moisture evaporation and open water evaporation (constituting the direct, purely physical fluxes, largely dominated by interception), and transpiration (delayed, biophysical flux). Here, we track these components forward as well as backward in time. We also include age tracers to study the atmospheric residence times of these evaporation components. As the main result we present a new image of the global hydrological cycle that includes quantification of partitioned evaporation and moisture recycling as well as the atmospheric residence times of all fluxes. We demonstrate that evaporated interception is more likely to return as precipitation on land than transpired water. On average, direct evaporation (essentially interception) is found to have an atmospheric residence time of eight days, while transpiration typically resides nine days in the atmosphere. Interception recycling has a much shorter local length scale than transpiration recycling, thus interception generally precipitates closer to its evaporative source than transpiration, which is particularly pronounced outside the tropics. We conclude that interception mainly works as an intensifier of the local hydrological cycle during wet spells. On the other hand, transpiration remains active during dry spells and is transported over much larger distances downwind where it can act as a significant source of moisture. Thus, as various land-use types can differ considerably in their partitioning between interception and transpiration, our results stress that land-use changes (e.g., forest to cropland conversion) do not only affect the magnitude of moisture recycling, but could also influence the moisture recycling patterns and lead to a redistribution of water resources. As such, this research highlights that land-use changes can have complex effects on the atmospheric branch of the hydrological cycle.


2016 ◽  
Vol 11 (3) ◽  
pp. 110-125 ◽  
Author(s):  
Yan Li ◽  
Chunlu Liu

Urban flooding has been a severe problem for many cities around the world as it remains one of the greatest threats to the property and safety of human communities. In Australia, it is seen as the most expensive natural hazard. However, urban areas that are impervious to rainwater have been sharply increasing owing to booming construction activities and rapid urbanisation. The change in the built environment may cause more frequent and longer duration of flooding in floodprone urban regions. Thus, the flood inundation issue associated with the effects of land uses needs to be explored and developed. This research constructs a framework for modelling urban flood inundation. Different rainfall events are then designed for examining the impact on flash floods generated by land-use changes. Measurement is formulated for changes of topographical features over a real time series. Geographic Information System (GIS) technologies are then utilised to visualise the effects of land-use changes on flood inundation under different types of storms. Based on a community-based case study, the results reveal that the built environment leads to varying degrees of aggravation of urban flash floods with different storm events and a few rainwater storage units may slightly mitigate flooding extents under different storm conditions. Hence, it is recommended that the outcomes of this study could be applied to flood assessment measures for urban development and the attained results could be utilised in government planning to raise awareness of flood hazard.


2014 ◽  
Vol 5 (2) ◽  
pp. 471-489 ◽  
Author(s):  
R. J. van der Ent ◽  
L. Wang-Erlandsson ◽  
P. W. Keys ◽  
H. H. G. Savenije

Abstract. The contribution of land evaporation to local and remote precipitation (i.e. moisture recycling) is of significant importance to sustain water resources and ecosystems. But how important are different evaporation components in sustaining precipitation? This is the first paper to present moisture recycling metrics for partitioned evaporation. In the companion paper Wang-Erlandsson et al. (2014) (hereafter Part 1), evaporation was partitioned into vegetation interception, floor interception, soil moisture evaporation and open-water evaporation (constituting the direct, purely physical fluxes, largely dominated by interception), and transpiration (delayed, biophysical flux). Here, we track these components forward as well as backward in time. We also include age tracers to study the atmospheric residence times of these evaporation components. We present a new image of the global hydrological cycle that includes quantification of partitioned evaporation and moisture recycling as well as the atmospheric residence times of all fluxes. We demonstrate that evaporated interception is more likely to return as precipitation on land than transpired water. On average, direct evaporation (essentially interception) is found to have an atmospheric residence time of 8 days, while transpiration typically resides for 9 days in the atmosphere. The process scale over which evaporation recycles is more local for interception compared to transpiration; thus interception generally precipitates closer to its evaporative source than transpiration, which is particularly pronounced outside the tropics. We conclude that interception mainly works as an intensifier of the local hydrological cycle during wet spells and wet seasons. On the other hand, transpiration remains active during dry spells and dry seasons and is transported over much larger distances downwind, where it can act as a significant source of moisture. Thus, as various land-use types can differ considerably in their partitioning between interception and transpiration, our results stress that land-use changes (e.g. forest-to-cropland conversion) do not only affect the magnitude of moisture recycling, but could also influence the moisture recycling patterns and lead to a redistribution of water resources. As such, this research highlights that land-use changes can have complex effects on the atmospheric branch of the hydrological cycle.


Sign in / Sign up

Export Citation Format

Share Document