scholarly journals CFD simulation of HPAM EOR solutions mechanical degradation by restrictions in turbulent flow

2020 ◽  
Vol 10 (2) ◽  
pp. 115-129
Author(s):  
Julia Herrera ◽  
Luis Prada ◽  
Gustavo Maya ◽  
Jose Luis Gomez ◽  
Ruben Castro ◽  
...  

Polymer flooding is a widely used enhanced oil recovery (EOR) technology. The purpose of the polymer is to increase water viscosity to improve reservoir sweep efficiency. However, mechanical elements of the polymer injection facilities may impact the viscosity of the polymer negatively, decreasing it drastically. Mechanical degradation of the polymer occurs in case of flow restrictions with abrupt diameter changes in valves and control systems. Such flow restrictions may induce mechanical stresses along the polymer chain, which can result in its rupture. In this research, physical experiments and numerical simulations using CFD (Computational Fluid Dynamics) were used to propose a model for estimating the mechanical degradation for the flow of polymer solutions. This technique involves the calculation of velocity gradients, pressure drawdown, and polymer degradation of the fluid through geometry restriction. The simulations were validated through polymer injection experiments. The results show that with the greater volumetric flow and lower effective diameters, there is more mechanical degradation due to polymer shearing; nonetheless, this depends on the rheology properties inherent in each polymer in an aqueous solution. This method is suitable to estimate the mechanical degradation of the polymer solution in flooding facilities and accessories. Further, the results obtained could enhance the use of the polymer, calculating its actual mechanical degradation, minimizing it, or using it to support the development of new accessories.

Author(s):  
Marcelo F. Zampieri ◽  
Rosangela B. Z. L. Moreno

Developing an efficient methodology for oil recovery is extremely important in this commodity industry, which may indeed lead to wide spread profitability. In the conventional water injection method, oil displacement occurs by mechanical behavior between fluids. Nevertheless, depending on mobility ratio, a huge quantity of injected water is necessary. Polymer injection aims to increase water viscosity and improve the water/oil mobility ratio, thus improving sweep efficiency. The alternating banks of polymer and water injection appear as an option for the suitable fields. By doing so, the bank serves as an economic alternative, as injecting polymer solution is an expensive process. The main objective of this study is to analyze and comparison of the efficiency of water injection, polymer injection and polymer alternate water injection. For this purpose, tests were carried out offset in core samples of sandstones using paraffin oil, saline solution and polymer and were obtained the recovery factor and water-oil ratio for each method. The obtained results for the continuous polymer injection and alternating polymer and water injection were promising in relation to the conventional water injection, aiming to anticipate the oil production and to improve the water management with the reduction of injected and produced water volumes.


2021 ◽  
Author(s):  
Bogdan-George Davidescu ◽  
Mathias Bayerl ◽  
Christoph Puls ◽  
Torsten Clemens

Abstract Enhanced Oil Recovery pilot testing aims at reducing uncertainty ranges for parameters and determining operating conditions which improve the economics of full-field deployment. In the 8.TH and 9.TH reservoirs of the Matzen field, different well configurations were tested, vertical versus horizontal injection and production wells. The use of vertical or horizontal wells depends on costs and reservoir performance which is challenging to assess. Water cut, polymer back-production and pressures are used to understand reservoir behaviour and incremental oil production, however, these data do not reveal insights about changes in reservoir connectivity owing to polymer injection. Here, we used consecutive tracer tests prior and during polymer injection as well as water composition to elucidate the impact of various well configurations on sweep efficiency improvements. The results show that vertical well configuration for polymer injection and production leads to substantial acceleration along flow paths but less swept volume. Polymer injection does not only change the flow paths as can be seen from the different allocation factors before and after polymer injection but also the connected flow paths as indicated by a change in the skewness of the breakthrough tracer curves. For horizontal wells, the data shows that in addition to acceleration, the connected pore volume after polymer injection is substantially increased. This indicates that the sweep efficiency is improved for horizontal well configurations after polymer injection. The methodology leads to a quantitative assessment of the reservoir effects using different well configurations. These effects depend on the reservoir architecture impacting the changes in sweep efficiency by polymer injection. Consecutive tracer tests are an important source of information to determine which well configuration to be used in full-field implementation of polymer Enhanced Oil Recovery.


1975 ◽  
Vol 15 (04) ◽  
pp. 338-346 ◽  
Author(s):  
M.T. Szabo

Abstract Numerous polymer floods were performed in unconsolidated sand packs using a C14-tagged, cross-linked, partially hydrolyzed ployacrylamide, and the data are compared with brine-flood performance in the same sands. performance in the same sands. The amount of "polymer oil" was linearly proportional to polymer concentration up to a proportional to polymer concentration up to a limiting value. The upper limit of polymer concentration yielding additional polymer oil was considerably higher for a high-permeability sand than for a low-permeability sand. It is shown that a minimum polymer concentration exists, below which no appreciable polymer oil can be produced in high-permeability sands. The effect of polymer slug size on oil recovery is shown for various polymer concentrations, and the results from these tests are used to determine the optimum slug size and polymer concentration for different sands. The effect of salinity was studied by using brine and tap water during polymer floods under similar conditions. Decreased salinity resulted in improved oil recovery at low, polymer concentrations, but it had little effect at higher polymer concentrations. Polymer injection that was started at an advanced stage of brine flood also improved the oil recovery in single-layered sand packs. Experimental data are presented showing the effect of polymer concentration and salinity on polymer-flood performance in stratified reservoir polymer-flood performance in stratified reservoir models. Polymer concentrations in the produced water were measured by analyzing the radioactivity of effluent samples, and the amounts of retained polymer in the stratified models are given for each polymer in the stratified models are given for each experiment. Introduction In the early 1960's, a new technique using dilute polymer solutions to increase oil recovery was polymer solutions to increase oil recovery was introduced in secondary oil-recovery operations. Since then, this new technique has attained wide-spread commercial application. The success and the complexity of this new technology has induced many authors to investigate many aspects of this flooding technique. Laboratory and field studies, along with numerical simulation of polymer flooding, clearly demonstrated that polymer additives increase oil recovery. polymer additives increase oil recovery. Some of the laboratory results have shown that applying polymers in waterflooding reduces the residual oil saturation through an improvement in microscopic sweep efficiency. Other laboratory studies have shown that applying polymer solutions improves the sweep efficiency in polymer solutions improves the sweep efficiency in heterogeneous systems. Numerical simulation of polymer flooding, and a summary of 56 field applications, clearly showed that polymer injection initiated at an early stage of waterflooding is more efficient than when initiated at an advanced stage. Although much useful information has been presented, the experimental conditions were so presented, the experimental conditions were so variable that difficulties arose in correlating the numerical data. So, despite this good data, a systematic laboratory study of the factors influencing the performance of polymer flooding was still lacking in the literature. The purpose of this study was to investigate the effect of polymer concentration, polymer slug size, salinity in the polymer bank, initial water saturation, and permeability on the performance of polymer floods. The role of oil viscosity did not constitute a subject of this investigation. However, some of the data indicated that the applied polymer resulted in added recovery when displacing more viscous oil. The linear polymer-flood tests were coupled with tests in stratified systems, consisting of the same sand materials used in linear flood tests. Thus, it was possible to differentiate between the role of polymer in mobility control behind the flood front in each layer and its role in mobility control in the entire stratified system through improvement in vertical sweep efficiency. A radioactive, C14-tagged hydrolyzed polyacrylamide was used in all oil-recovery tests. polyacrylamide was used in all oil-recovery tests. SPEJ P. 338


2020 ◽  
Vol 42 (2) ◽  
pp. 59-63
Author(s):  
Yani Faozani Alli

The use of polymer for tertiary oil recovery has been known to be important as viscosity modifier to increase sweep efficiency of water flood and chemical flood. The most common polymer used for chemical flood is hydrolyzed polyacrylamide (HPAM) that owing large number of charges along the polymer chains. However, formation water as dissolution water contain high electrolytes that has a great effect on polymer viscosity, as well as responsible to generate the efficiency of polymer flooding. In this study, the effect of electrolytes from saline and cation divalent to the viscosity of polymer was investigated. Three studied polymers were dissolved in various concentration of saline and cation divalent by analyzing the compatibility, viscosity, and the filtration ratio of polymers. The results showed that the presence of electrolytes in every concentration of water did not impact the compatibility and filtration ratio of polymers. Whereas, the addition of sodium chloride as saline ionic and calcium chloride as cationic divalent were both reducing the viscosity of polymers. The lower viscosity of polymer related to the ability of polymer to expand the hydrodynamic which limited by the neutralization of internal repulsion of the electrolytes.


2016 ◽  
Vol 19 (04) ◽  
pp. 655-663 ◽  
Author(s):  
Torsten Clemens ◽  
Markus Lüftenegger ◽  
Ajana Laoroongroj ◽  
Rainer Kadnar ◽  
Christoph Puls

Summary Polymer-injection pilot projects aim at reducing the uncertainty and risk of full-field polymer-flood implementation. The interpretation of polymer-pilot projects is challenging because of the complexity of the process and fluids moving out of the polymer-pilot area. The interpretation is increasingly more complicated with the heterogeneity of the reservoir. In the polymer pilot performed in the 8 Torton Horizon (TH) reservoir of the Matzen field in Austria, a polymer-injection well surrounded by a number of production wells was selected. A tracer was injected 1 week before polymer injection. The tracer showed that the flow field in the reservoir was dramatically modified with increasing amounts of polymer injected. Despite short breakthrough times of 4 to 10 weeks observed for the tracer, polymer breakthrough occurred only after more than 12 months although injection and production rates were not substantially changed. The tracer signal indicated that the reservoir is heterogeneous, with high flow velocities occurring along a number of flow paths with a limited volume that are strongly connecting the injection and production wells. By injecting polymers, the mobility of the polymer-augmented water was reduced compared with water injection, and led to flow diversion into adjacent layers. The tracer response showed that the speed of the tracer moving from injection to production wells was reduced with increasing amount of polymer injected. This response was used to assess the changes of the amount of water flowing from the injection well to production wells. After a match for the tracer curve was obtained, adsorption, residual resistance factor (RRF), and dispersivity were calculated. The results showed that, even for heterogeneous reservoirs without good conformance of the pilot, the critical parameters for polymer-injection projects can be assessed by analyzing tracer and polymer response. These parameters are required to determine whether implementation of polymer injection at field scale is economically attractive. Along the flow path that is connecting injection and production well, as shown by the tracer response, an incremental recovery of approximately 8% was achieved. The polymer retention and inaccessible pore volume (IPV) in the reservoir were in the same range as in corefloods. Incremental oil recovery caused by acceleration along the flow path was estimated at approximately 20% of the overall incremental oil production caused by polymer injection and 80% was attributed to improved sweep efficiency.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 197 ◽  
Author(s):  
Ryan Santoso ◽  
Victor Torrealba ◽  
Hussein Hoteit

Polymer flooding is an effective enhanced oil recovery technology used to reduce the mobility ratio and improve sweep efficiency. A new polymer injection scheme is investigated that relies on the cyclical injection of low-salinity, low-concentration polymer slugs chased by high-salinity, high-concentration polymer slugs. The effectiveness of the process is a function of several reservoir and design parameters related to polymer type, concentration, salinity, and reservoir heterogeneity. We use reservoir simulations and design-of-experiments (DoE) to investigate the effectiveness of the proposed polymer injection scheme. We show how key objective functions, such as recovery factor and injectivity, are impacted by the reservoir and design parameters. In this study, simulations showed that the new slug-based process was always superior to the reference polymer injection scheme using the traditional continuous injection scheme. Our results show that the process is most effective when the polymer weight is high, corresponding to large inaccessible pore-volumes, which enhances polymer acceleration. High vertical heterogeneity typically reduces the process performance because of increased mixing in the reservoir. The significance of this process is that it allows for increased polymer solution viscosity in the reservoir without increasing the total mass of polymer, and without impairing polymer injectivity at the well.


2018 ◽  
Vol 171 ◽  
pp. 04001
Author(s):  
Warut Tuncharoen ◽  
Falan Srisuriyachai

Polymer flooding is widely implemented to improve oil recovery since polymer can increase sweep efficiency and smoothen heterogeneous reservoir profile. However, polymer solution is somewhat difficult to be injected due to high viscosity and thus, water slug is recommended to be injected before and during polymer injection in order to increase an ease of injecting this viscous fluid into the wellbore. In this study, numerical simulation is performed to determine the most appropriate operating parameters to maximize oil recovery. The results show that pre-flushed water should be injected until water breakthrough while alternating water slug size should be as low as 5% of polymer slug size. Concentration for each polymer slugs should be kept constant and recommended number of alternative cycles is 2. Combining these operating parameters altogether contributes to oil recovery of 53.69% whereas single-slug polymer flooding provides only 53.04% which is equivalent to 8,000 STB of oil gain.


2018 ◽  
Vol 175 ◽  
pp. 01006
Author(s):  
Xu WenBo

For the main polymer flooding oilfield expansion and infill wells three times the area of deployment, the proposed development mode II oil reservoir of polymer flooding and thin and poor combination of three encryption. In this paper, the use of leading edge water monitoring methods and principles of the plane heterogeneity through physical simulation to study the effects of different mining methods II oil and a combination of the three encryption effects of flooding. Studies have shown that, together with the water flooding recovery can be increased by nearly 19 percent, higher than the water poly alternate drive about 4%, the injection pressure is about three types of reservoir 0.3MPa, flat stage water flood sweep efficiency compared with an average of 30.95%. Meanwhile polymer injection can increase oil recovery by 21%, but the limited ability of three types of oil injection, polymer injection pressure during injection 0.22PV up to 0.8MPa, water flooding stage by an average of 30 percent compared to the plane sweep efficiency. The water flooding recovery poly alternately raise only 15%, an average increase of 26.95 percent driven phase plane sweep efficiency than water. Theoretical results of this study may provide a reliable basis for the future development of efficient thin and poor reservoirs.


2021 ◽  
Author(s):  
Mursal Zeynalli ◽  
Emad W. Al-Shalabi ◽  
Waleed AlAmeri

Abstract Polymer flooding is one of the most commonly used chemical EOR methods. Conventionally, this technique was believed to improve macroscopic sweep efficiency by sweeping only bypassed oil. Nevertheless, recently it has been found that polymers exhibiting viscoelastic behavior in the porous medium can also improve microscopic displacement efficiency resulting in higher additional oil recovery. Therefore, an accurate prediction of the complex rheological response of polymers is crucial to obtain a proper estimation of incremental oil to polymer flooding. In this paper, a novel viscoelastic model is proposed to comprehensively analyze the polymer rheological behavior in porous media. The proposed viscoelastic model is considered an extension of the unified apparent viscosity model provided in the literature and is termed as extended unified viscosity model (E-UVM). The main advantage of the proposed model is its ability to capture the polymer mechanical degradation at ultimate shear rates primarily observed near wellbores. Furthermore, the fitting parameters used in the model were correlated to rock and polymer properties, significantly reducing the need for time-consuming coreflooding tests for future polymer screening works. Moreover, the extended viscoelastic model was implemented in MATLAB Reservoir Simulation Toolbox (MRST) and verified against the original shear model existing in the simulator. It was found that implementing the viscosity model in MRST might be more accurate and practical than the original method. In addition, the comparison between various viscosity models proposed earlier and E-UVM in the reservoir simulator revealed that the latter model could yield more reliable oil recovery predictions since it accommodates the mechanical degradation of polymers. This study presents a novel viscoelastic model that is more comprehensive and representative as opposed to other models in the literature.


2021 ◽  
Author(s):  
Celestine Udie ◽  
Fina Faithpraise ◽  
Agnes Anuka

Abstract The objective is to design a control agent that will induce fluids flow orientation in a reservoir. The specific objectives are to delineate the minimum volumetric rate of the injecting fluid that will orient and control reservoir fluids flow rate and the recovery efficiency. Next estimate the maximum flooding injection rate for high oil recovery and finally predict reservoir fluids recovery efficiency. This work estimates the minimum volumetric rate of the injecting displacing fluid that will displace and control reservoir fluids flow rate and efficiency using mobility ratio. Next it estimates the maximum injection rate of the displacing agent that will recover high oil using summation of the reservoir thickness. Finally, it predicts reservoir fluids flow rates and cumulative oil recovery using unit floodable pore volume and the daily or yearly floodable volume. A cash flow model is used here to describe and compare the revenue (Recovery bill) and the costs (Capex and Opex). The result shows that it is possible to attain a floodable volumetric sweep efficiency of 70% with a corresponding recovery factor of 66% and a floodable volumetric sweep efficiency of 80 with a corresponding recovery factor of 72%, compared to scenario - C(Oil reservoir producing under water-drive and gas injection) where recovery factor is possibly 25 to 40%. Both recovery efficiency/factor depend on the summation of the volumetric floodable ratio. The novelty in this work is the development of a control agent which can increase recovery factor from 40% to 66% or 72%


Sign in / Sign up

Export Citation Format

Share Document