scholarly journals KONTRIBUSI PERAMALAN PENERIMAAN MAHASISWA BARU POLITEKNIK : SEBAGAI ALAT ESTIMASI PENDAPATAN

2020 ◽  
Vol 18 (2) ◽  
pp. 266
Author(s):  
Ahmad Mustofa ◽  
Nurafni Eltivia ◽  
Zainal Abdul Haris

Purpose of this research was to determine the forecasting results of new student admissions and the estimated amount of income from a recurrent academic fees. The data was secondary data from the list of enthusiasts and the capacity of new students. This research was quantitative descriptive and using Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Mean Absolute Deviation (MAD) as a calculation of the level of error accuracy, and single exponential smoothing method as forecasting of new student admissions. Forecasting results obtained DIII Accounting enthusiasts and capacity totaling 2951 and 181 students for 2020 while 2186 students and 191 students for 2021. For the DIV Management accounting produces 4184 and 238 students interested, 238 students for 2020, whereas in 2021 produced 5106 enthusiasts and 226 students for capacity of new students. the total estimated revenues in 2020 and 2021 have a significant amount of interest from new students and the interest of new students through a recurrent academic fees. It was concluded that forecasting can also be used to calculate the estimated income in an institution or even a company so that this paper will contribute to the field of information and finance that can help in decision making.

2020 ◽  
Vol 1 (2) ◽  
pp. 45
Author(s):  
Dewi Darma Pertiwi

Weather conditions in the city of Mataram tend to be erratic and difficult to predict, such as the condition of rainfall data in 2018 which changes over a certain period of time so that the weather is difficult to predict accurately. In this study, we propose the Exponential Smoothing Holt-Winter method to forecast rainfall in the city of Mataram, so that it can be a decision support for various interested sectors. This method has been tested using secondary data from the Mataram City Central Bureau of Statistics for the period January 2014 to 2018 and evaluated using Mean Absolute Deviation (MAD), Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). The results of this study indicate that using the Exponential Smoothing Holt-Winter method yields better results, each of which is MAPE 142.3, MAD 95.6 and MSD value 24988.7 and the data smoothing value is obtained for the smallest combination value of α 0.2, β 0.1, and γ 0.1. It can be concluded that the proposed method can provide better information and can be used to predict rainfall in Mataram City for the next 12 periods.


Jurnal Varian ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 73-82
Author(s):  
Ulul Azmi ◽  
Zilullah Nazir Hadi ◽  
Siti Soraya

Penelitian ini berisi tentang prediksi atau forecasting data iklim di Nusa Tenggara Barat (NTB) tahun 2011, yakni jumlah hari terjadinya hujan dengan menggunakan metode Autoregressive Distributed Lag (ARDL). Data yang digunakan yaitu data iklim di Nusa Tenggara Barat (NTB) dari tahun 2006 -2010, dengan menggunakan beberapa parameter error seperti Mean Absolute Deviation (MAD), Mean Squared Error (MSE), Root Mean Squared Error (RMSE) dan Mean Absolute Percentage Error (MAPE). Berdasarkan hasil simulasi data iklim di Nusa Tenggara Barat (NTB) tersebut, diperoleh prediksi jumlah hari terjadinya curah hujan pada tahun 2011 sebesar 226 hari dengan nilai MAD 20,8069, MSE 3,5569, RMSE 1,88597, dan MAPE 11,9297 . Dan prediksi jumlah hari terjadinya hujan pada tahun 2011 sebanyak 225,928 hari atau jika di bulatkan menjadi 226 hari dengan nilai parameter error MAD sebesar 20,8069, sehingga dapat disimpulkan pada tahun 2011 terjadi peningkatan jumlah hari terjadinya hujan di Nusa Tenggara Barat (NTB).


2020 ◽  
Vol 11 (1) ◽  
pp. 44
Author(s):  
Rahmat Robi Waliyansyah ◽  
Nugroho Dwi Saputro

College education institutions regularly hold new student admissions activities, and the number of new students can increase and can also decrease. University of PGRI Semarang (UPGRIS) on the development of new student admissions for the 2014/2015 academic year up to 2018/2019 with so many admissions selection stages. To meet the minimum comparison requirements between the number of students with the development of human resources, facilities, and infrastructure, it is necessary to predict how much the number of students increases each year. To make a prediction system or forecasting, the number of prospective new students required a good forecasting method and sufficiently precise calculations to predict the number of prospective students who register. In this study, the method to be taken is the Random Forest method. For the evaluation of forecasting models used Random Sampling and Cross-validation. The parameter used is Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R2). The results of this study obtained the five highest and lowest study programs in the admission of new students. Therefore, UPGRIS will make a new strategy for the five lowest study programs so that the desired number of new students is achieved


2019 ◽  
Vol 70 (3) ◽  
pp. 257-263
Author(s):  
Rıfat Kurt ◽  
Selman Karayilmazlar

There are a large number of costs that enterprises need to bear in order to produce the same product at the same quality for a more affordable price. For this reason, enterprises have to minimize their expenses through a couple of measures in order to offer the same product for a lower price by minimizing these costs. Today, quality control and measurements constitute one of the major cost items of enterprises. In this study, the modulus of elasticity values of particleboards were estimated by using Artificial Neural Networks (ANN) and other mechanical properties of particleboards in order to reduce the measurement costs in particleboard enterprises. In addition to that, the future values of modulus of elasticity were also estimated using the same variables with the purpose of monitoring the state of the process. For this purpose, data regarding the mechanical properties of the boards were randomly collected from the enterprise for three months. The sample size (n) was: 6 and the number of samples (m): 65 and a total of 65 average measurement values were obtained for each mechanical property. As a result of the implementation, the low Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD) and Mean Squared Error (MSE) performance measures of the model clearly showed that some quality characteristics could easily be estimated by the enterprises without having to make any measurements by ANN.


2020 ◽  
Vol 19 (3) ◽  
Author(s):  
Bruno Matos Porto ◽  
Daniela Althoff Philippi ◽  
Vanessa Aline Wagner Leite

O objetivo deste artigo foi gerar previsões de curto, médio e longo prazos e comparar a precisão dos modelos em cada horizonte de previsão. Para atender o objetivo foram aplicados os modelos univariados e rede neural (NNAR) nos dados da demanda turística do estado de Mato Grosso do Sul (MS). A amostra foi coletada na ferramenta base de dados extrator do Instituto Brasileiro de Turismo (Embratur) referente as chegadas turísticas por todas as vias registradas no MS entre janeiro de 2007 a dezembro de 2017. As previsões dos modelos de previsão ARIMA, Holt-Winters (HW) versões aditiva e multiplicativa e NNAR foram projetadas, por meio da linguagem de programação R, com uso do software R Studio. O procedimento empírico de execução dos scripts de todos os modelos foi disponibilizado. As predições fora da amostra da procura do turismo abrangeram o intervalo de janeiro até dezembro de 2018, sendo então comparadas aos dados reais do mesmo período. As previsões dos modelos foram comparadas no curto, médio e longo prazo mediante os critérios Mea Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD) e Mean Squared Error (MSD). A rede neural (NNAR) superou os modelos testados em diferentes horizontes de previsão e as medidas de erros mostraram que a NNAR é altamente precisa. Em segundo lugar no ranking de acuracidade destacou-se ARIMA. Os resultados mostraram que as previsões da rede neural auxiliam na tomada de decisão dos planejadores turísticos de MS. Para pesquisas futuras recomenda-se realizar previsões fora da amostra num amplo número de séries temporais.


2021 ◽  
Vol 6 (3) ◽  
pp. 174
Author(s):  
Denny Nurdiansyah ◽  
Khoirul Wafa

Latar Belakang: COVID-19 menjadi perhatian utama di Bojonegoro karena kasus terinfeksi meningkat sampai akhir tahun 2020. Selain itu, wabah demam berdarah dengue (DBD) juga perlu diantisipasi di musim penghujan agar tidak meningkat bersamaan dengan wabah COVID-19.Tujuan: Mengembangkan model exponential smoothing berbasis metode evolutionary untuk meramalkan banyaknya kasus terinfeksi COVID-19 dan DBD di Bojonegoro.Metode: Penelitian diawali dengan pembuatan aplikasi peramalan model exponential smoothing dengan metode evolutionary dan pemrograman Visual Basic yang dikembangkan di Excel dan Solver. Koefisien-koefisien model dioptimasi secara iteratif dengan metode evolutionary dan metode generalized reduced gradient. Model tersebut dievaluasi kinerjanya dengan nilai mean absolute percentage error (MAPE), mean absolute deviation (MAD), dan mean squared error (MSE). Sumber data penelitian menggunakan data sekunder dari Dinas Kesehatan Bojonegoro yang berisi data harian kasus terinfeksi COVID-19 dan data bulanan kasus DBD.Hasil: Model double exponential smoothing berbasis metode generalized reduced gradientmenghasilkan kesalahan model peramalan yang lebih kecil untuk nilai MAPE, MAD, dan MSE. Hasil peramalan menunjukkan bahwapeningkatan terjadi pada periode ke depan untuk kasus terinfeksi COVID-19 yang lebih besar dibandingkan DBD.Kesimpulan: Aplikasi peramalan model exponential smoothing dapat menjadi altenatif dalam meramalkan banyaknya kasus terinfeksi COVID-19 dan DBD di Bojonegoro.


2019 ◽  
Vol 6 (1) ◽  
pp. 41
Author(s):  
Jaka Darma Jaya

Perkembangan produksi daging sapi di Indonesia selama 30 tahun terakhir secara umum cenderung meningkat. Kebutuhan daging sapi di Indonesia masih belum bisa dicukupi oleh supply domestik, sehingga diperlukan impor daging sapi dari luar negeri.  Diperlukan kajian tentang proyeksi ketersediaan populasi sapi potong di masa mendatang agar diambil kebijakan yang tepat dalam menjaga stabilitas dan keterpenuhan supply daging nasional.  Penelitian ini bertujuan untuk melakukan peramalan jumlah populasi sapi potong menggunakan 3 (tiga) metode peramalan yaitu metode moving average, exponential smoothing dan trend analysis.  Hasil peramalan ini selanjutnya diukur akurasinya menggunakan MAD (Mean Absolud Deviation), MSE (Mean Squared Error) dan MAPE (Mean Absolute Percentage Error).  Proyeksi populasi sapi potong pada tahun 2019 (periode berikutnya) menggunakan 3 metode peramalan adalah: 195.100 (moving average); 218.225 (exponential smooting) dan 262.899 (trend analysis). Pengukuran akurasi menggunakan MAD, MSE dan MAPE menunjukkan bahwa metode peramalan jumlah populasi sapi potong yang paling akurat adalah peramalan menggunakan metode polynomial trend analysis (MAD 14.716,12;  MSE 327.282.084,17; dan MAPE 0,09) karena memiliki tingkat kesalahan yang lebih kecil dibandingkan hasil peramalan menggunakan metode moving average dan exponential smoothing.


Author(s):  
Tatang Rohana Cucu

Abstract - The process of admitting new students is an annual routine activity that occurs in a university. This activity is the starting point of the process of searching for prospective new students who meet the criteria expected by the college. One of the colleges that holds new student admissions every year is Buana Perjuangan University, Karawang. There have been several studies that have been conducted on predictions of new students by other researchers, but the results have not been very satisfying, especially problems with the level of accuracy and error. Research on ANFIS studies to predict new students as a solution to the problem of accuracy. This study uses two ANFIS models, namely Backpropagation and Hybrid techniques. The application of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model in the predictions of new students at Buana Perjuangan University, Karawang was successful. Based on the results of training, the Backpropagation technique has an error rate of 0.0394 and the Hybrid technique has an error rate of 0.0662. Based on the predictive accuracy value that has been done, the Backpropagation technique has an accuracy of 4.8 for the value of Mean Absolute Deviation (MAD) and 0.156364623 for the value of Mean Absolute Percentage Error (MAPE). Meanwhile, based on the Mean Absolute Deviation (MAD) value, the Backpropagation technique has a value of 0.5 and 0.09516671 for the Mean Absolute Percentage Error (MAPE) value. So it can be concluded that the Hybrid technique has a better level of accuracy than the Backpropation technique in predicting the number of new students at the University of Buana Perjuangan Karawang.   Keywords: ANFIS, Backpropagation, Hybrid, Prediction


2020 ◽  
Vol 16 (3) ◽  
pp. 1-12
Author(s):  
Khoirul Hidayah ◽  
Sukarni Sukarni ◽  
Achmad Syaichu

Suatu produksi yang direncanakan dengan baik akan menghasilkan efektivitas dan efisiensi produksi bagi perusahaan. Pentingnya perencanaan material pada perusahaan diharapkan dapat menghasilkan sistem yang baik terhadap proses produksi. Tujuan dari penelitian ini adalah untuk mengetahui penerapan Material Requirement Planning (MRP) sehingga kebutuhan bahan baku selama proses produksi di UPT MAKARTI POMOSDA dapat terpenuhi dengan menggunakan metode peramalan forecasting dalam satu tahun yaitu, moving average dan weighted moving average.  Metode ini terpilih untuk mengetahui safety stock nya produk setiap bulan dan setiap tahun. Berdasarkan detail dan analisa kesalahan metode moving average dengan menggunakan program POM QM forWindows Versi 3 Basic (Mean Error) 42,455, MAD (Mean Absolute Deviation) 259,545, MSE (Mean Squared Error) 118490,6, Standard Error (denom=n-2=9) 380,555, MAPE (Mean Absolute Percent Error) 643, dan next period 480. Sedangkan detail dan analisa kesalahan metode ini dengan menggunakan program POM QM For Windows Versi 3 Basic (Mean Error) 38,827, MAD (Mean Absolute Deviation) 212,257, MSE (Mean Squared Error) 83586,58, Standard Error (denom=n-2=9) 323,239, MAPE (Mean Absolute Percent ) 495, dan next period 464,893. Berdasarkan hasil proses diatas juga diketahui (safety stock) pada UPT MAKARTI POMOSDA pada tahun 2017 yaitu sejumlah 5209 unit, setelah dilakukan penelitian mengalami kenaikan sebesar 6758 dengan prosentase sebesar 129,7%, sehingga tidak ada penumpukan barang digudang. Hal ini juga didukung dengan penurunan biaya simpan bahan baku dari Rp 120.850/Periode (bulan) menjadi Rp 109.350/Periode (bulan).


2014 ◽  
Vol 1044-1045 ◽  
pp. 1824-1827
Author(s):  
Yi Ti Tung ◽  
Tzu Yi Pai

In this study, the back-propagation neural network (BPNN) was used to predict the number of low-income households (NLIH) in Taiwan, taking the seasonally adjusted annualized rates (SAAR) for real gross domestic product (GDP) as input variables. The results indicated that the lowest mean absolute percentage error (MAPE), mean squared error (MSE), root mean squared error (RMSE), and highest correlation coefficient (R) for training and testing were 4.759 % versus 19.343 %, 24429972.268 versus 781839890.859, 4942.669 versus 27961.400, and 0.945 versus 0.838, respectively.


Sign in / Sign up

Export Citation Format

Share Document