scholarly journals Neuroprotective effects of the ethanol extract of Salvia miltiorrhiza in Northern Vietnam against amyloid beta25-35-induced learning and memory impairment in vivo and cytotoxicity in vitro

2021 ◽  
Vol 48 (3) ◽  
pp. 231-238
Author(s):  
Thi Loan Tran ◽  
Thanh Hai Nguyen ◽  
Nguyet Hang Thi Pham ◽  
Thien Thuong Phuong ◽  
Thi Thanh Nguyen ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Pengfei Liu ◽  
Jing Yuan ◽  
Yetong Feng ◽  
Xin Chen ◽  
Guangsuo Wang ◽  
...  

AbstractFerroptosis is a novel type of programmed cell death, which is different from apoptosis and autophagic cell death. Recently, ferroptosis has been indicated to contribute to the in vitro neurotoxicity induced by isoflurane, which is one of the most common anesthetics in clinic. However, the in vivo position of ferroptosis in isoflurane-induced neurotoxicity as well as learning and memory impairment remains unclear. In this study, we mainly explored the relationship between ferroptosis and isoflurane-induced learning and memory, as well as the therapeutic methods in mouse model. Our results indicated that isoflurane induced the ferroptosis in a dose-dependent and time-dependent manner in hippocampus, the organ related with learning and memory ability. In addition, the activity of cytochrome c oxidase/Complex IV in mitochondrial electron transport chain (ETC) was increased by isoflurane, which might further contributed to cysteine deprivation-induced ferroptosis caused by isoflurane exposure. More importantly, isoflurane-induced ferroptosis could be rescued by both ferroptosis inhibitor (ferrostatin-1) and mitochondria activator (dimethyl fumarate), which also showed effective therapeutic action against isoflurane-induced learning and memory impairment. Taken together, our data indicate the close association among ferroptosis, mitochondria and isoflurane, and provide a novel insight into the therapy mode against isoflurane-induced learning and memory impairment.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Ju Eun Kim ◽  
Abinash Chandra Shrestha ◽  
Hyo Shin Kim ◽  
Ha Neul Ham ◽  
Jun Hyeong Kim ◽  
...  

Alzheimer's disease (AD) is linked to an extensive neuron loss via accumulation of amyloid-beta (Aβ) as senile plaques associated with reactive astrocytes and microglial activation in the brain. The objective of this study was to assess the therapeutic effect of WS-5 ethanol extract in vitro and in vivo against Aβ-induced AD in mice and to identify the extract’s active constituents. In the present study, WS-5 exerted a significant inhibitory effect on acetylcholinesterase (AChE). Analysis by transmission electron microscopy (TEM) revealed that WS-5 prevented Aβ oligomerization via inhibition of Aβ1-42 aggregation. Evaluation of antioxidant activities using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) demonstrated that WS-5 possessed a high antioxidant activity, which was confirmed by measuring the total antioxidant status (TAS). Furthermore, the anti-inflammatory properties of WS-5 were examined using lipopolysaccharide-stimulated BV-2 microglial cells. WS-5 significantly inhibited the lipopolysaccharide–induced production of nitric oxide and two proinflammatory cytokines, TNF-α and IL-6. The memory impairment in mice with Aβ-induced AD was studied using the Morris water maze and passive avoidance test. Immunohistochemistry was performed to monitor pathological changes in the hippocampus and cortex region of the mouse brain. The animal study showed that WS-5 (250 mg/kg) treatment improved learning and suppressed memory impairment as well as reduced Aβ plaque accumulation in Aβ-induced AD. HPLC analysis identified the extract’s active compounds that exert anti-AChE activity. In summary, our findings suggest that WS-5 could be applied as a natural product therapy with a focus on neuroinflammation-related neurodegenerative disorders.


2009 ◽  
Vol 121 (1) ◽  
pp. 130-134 ◽  
Author(s):  
Min Hye Yang ◽  
Kee Dong Yoon ◽  
Young-Won Chin ◽  
Ju Hyun Park ◽  
Seung Hyun Kim ◽  
...  

2020 ◽  
Vol 11 (2) ◽  
pp. 1729-1739 ◽  
Author(s):  
Hongxia Che ◽  
Lingyu Zhang ◽  
Lin Ding ◽  
Wancui Xie ◽  
Xiaoming Jiang ◽  
...  

Our previous study showed that EPA-enriched ethanolamine plasmalogen (EPA-pPE) exerted more significant effects than EPA-enriched phosphatidylethanolamine (EPA-PE) in improving learning and memory deficit.


Author(s):  
Wen-Dai Bao ◽  
Pei Pang ◽  
Xiao-Ting Zhou ◽  
Fan Hu ◽  
Wan Xiong ◽  
...  

AbstractIron homeostasis disturbance has been implicated in Alzheimer’s disease (AD), and excess iron exacerbates oxidative damage and cognitive defects. Ferroptosis is a nonapoptotic form of cell death dependent upon intracellular iron. However, the involvement of ferroptosis in the pathogenesis of AD remains elusive. Here, we report that ferroportin1 (Fpn), the only identified mammalian nonheme iron exporter, was downregulated in the brains of APPswe/PS1dE9 mice as an Alzheimer’s mouse model and Alzheimer’s patients. Genetic deletion of Fpn in principal neurons of the neocortex and hippocampus by breeding Fpnfl/fl mice with NEX-Cre mice led to AD-like hippocampal atrophy and memory deficits. Interestingly, the canonical morphological and molecular characteristics of ferroptosis were observed in both Fpnfl/fl/NEXcre and AD mice. Gene set enrichment analysis (GSEA) of ferroptosis-related RNA-seq data showed that the differentially expressed genes were highly enriched in gene sets associated with AD. Furthermore, administration of specific inhibitors of ferroptosis effectively reduced the neuronal death and memory impairments induced by Aβ aggregation in vitro and in vivo. In addition, restoring Fpn ameliorated ferroptosis and memory impairment in APPswe/PS1dE9 mice. Our study demonstrates the critical role of Fpn and ferroptosis in the progression of AD, thus provides promising therapeutic approaches for this disease.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Callizot ◽  
C. Estrella ◽  
S. Burlet ◽  
A. Henriques ◽  
C. Brantis ◽  
...  

AbstractProgranulin (PGRN) is a protein with multiple functions including the regulation of neuroinflammation, neuronal survival, neurite and synapsis growth. Although the mechanisms of action of PGRN are currently unknown, its potential therapeutic application in treating neurodegenerative diseases is huge. Thus, strategies to increase PGRN levels in patients could provide an effective treatment. In the present study, we investigated the effects of AZP2006, a lysotropic molecule now in phase 2a clinical trial in Progressive Supranuclear Palsy patients, for its ability to increase PGRN level and promote neuroprotection. We showed for the first time the in vitro and in vivo neuroprotective effects of AZP2006 in neurons injured with Aβ1–42 and in two different pathological animal models of Alzheimer’s disease (AD) and aging. Thus, the chronic treatment with AZP2006 was shown to reduce the loss of central synapses and neurons but also to dramatically decrease the massive neuroinflammation associated with the animal pathology. A deeper investigation showed that the beneficial effects of AZP2006 were associated with PGRN production. Also, AZP2006 binds to PSAP (the cofactor of PGRN) and inhibits TLR9 receptors normally responsible for proinflammation when activated. Altogether, these results showed the high potential of AZP2006 as a new putative treatment for AD and related diseases.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3977
Author(s):  
Shaoyun Wang ◽  
Xiaozhu Sun ◽  
Shuo An ◽  
Fang Sang ◽  
Yunli Zhao ◽  
...  

Polygoni Multiflori Radix Praeparata (PMRP), as the processed product of tuberous roots of Polygonum multiflorum Thunb., is one of the most famous traditional Chinese medicines, with a long history. However, in recent years, liver adverse reactions linked to PMRP have been frequently reported. Our work attempted to investigate the chemical constituents of PMRP for clinical research and safe medication. In this study, an effective and rapid method was established to separate and characterize the constituents in PMRP by combining ultra-high performance liquid chromatography with hybrid quadrupole-orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS). Based on the accurate mass measurements for molecular and characteristic fragment ions, a total of 103 compounds, including 24 anthraquinones, 21 stilbenes, 15 phenolic acids, 14 flavones, and 29 other compounds were identified or tentatively characterized. Forty-eight compounds were tentatively characterized from PMRP for the first time, and their fragmentation behaviors were summarized. There were 101 components in PMRP ethanol extract (PMRPE) and 91 components in PMRP water extract (PMRPW). Simultaneously, the peak areas of several potential xenobiotic components were compared in the detection, which showed that PMRPE has a higher content of anthraquinones and stilbenes. The obtained results can be used in pharmacological and toxicological research and provided useful information for further in vitro and in vivo studies.


2021 ◽  
pp. 1-13
Author(s):  
Claire Rühlmann ◽  
David Dannehl ◽  
Marcus Brodtrück ◽  
Andrew C. Adams ◽  
Jan Stenzel ◽  
...  

Background: To date, there are no effective treatments for Alzheimer’s disease (AD). Thus, a significant need for research of therapies remains. Objective: One promising pharmacological target is the hormone fibroblast growth factor 21 (FGF21), which is thought to be neuroprotective. A clinical candidate for medical use could be the FGF21 analogue LY2405319 (LY), which has a specificity and potency comparable to FGF21. Methods: The present study investigated the potential neuroprotective effect of LY via PPARγ/apoE/abca1 pathway which is known to degrade amyloid-β (Aβ) plaques by using primary glial cells and hippocampal organotypic brain slice cultures (OBSCs) from 30- and 50-week-old transgenic APPswe/PS1dE9 (tg) mice. By LY treatment of 52-week-old tg mice with advanced Aβ deposition, we further aimed to elaborate the effect of LY on AD pathology in vivo. Results: LY application to primary glial cells caused an upregulation of pparγ, apoE, and abca1 mRNA expression and significantly decreased number and area of Aβ plaques in OBSCs. LY treatment in tg mice increased cerebral [18F] FDG uptake and N-acetylaspartate/creatine ratio indicating enhanced neuronal activity and integrity. Although LY did not reduce the number of Aβ plaques in tg mice, the number of iba1-positive cells was significantly decreased indicating reduced microgliosis. Conclusion: These data identified LY in vitro as an activator of Aβ degrading genes leading to cerebral Aβ load amelioration in early and late AD pathology. Although Aβ plaque reduction by LY failed in vivo, LY may be used as therapeutic agent to treat AD-related neuroinflammation and impaired neuronal integrity.


Sign in / Sign up

Export Citation Format

Share Document