scholarly journals The Expression of Bile Acid Receptor TGR5 in Adipose Tissue in Diet-Induced Obese Mice

Author(s):  
Sumaya Ahmed ◽  
Nasser Rizk

Bile acids are significant physiological factors for digestion, solubilization, absorption, toxic metabolites and xenobiotics. In addition, bile acids are responsible of signal transduction as well as metabolic regulation that activate several receptors such as farnesoid X receptor (FXR) and the membrane G-protein receptor 5 (TGR5). Activation of TGR5 by bile acids is associated with prevention of obesity as well as ameliorating the resistance to insulin via increasing energy expenditure. The objective of this research is to investigate TGR5 gene expression level in different fat depots including visceral or epididymal adipose tissue (eWAT), brown adipose tissue and inguinal adipose tissue (iWAT) and to study the response of TGR5 gene expression to the antiobesity treatment (SFN). Three groups of male CD1 mice were used in this study; lean group fed with SCD, DIO mice on HFD and DIO obese mice treated with anti-obesity treatment. Body weight (BW) and phenotype data were evaluated by weekly including blood samples for analysis of glucose, insulin, leptin, triglycerides (TG). Total RNA was extracted from different fat depots and RT-PCR profiler array technology was used to in order to assess the mRNA expression of TGR5 and leptin. There was significant downregulation of TGR5 gene expression level in obese (DIO) mice and remarkable upregulation of TGR5 gene expression after successful weight loss in DIO mice treated with SFN in time dependent manner at 1 weeks and 4 weeks of ip applications. In conclusion, obesity is associated with decrease in expression of TGR5 in different fat depots and treatment with anti-obesity drug (Sulforaphane) causes stepwise upregulation of TGR5 gene expression in epididymal white adipose tissue parallel stepwise decrease in body weight. Increase of expression of TGR5 in DIO mice in eWAT is accompanied by improvement in glucose homeostasis and insulin action.

2021 ◽  
Author(s):  
Hossein Arefanian ◽  
Irina Al-Khairi ◽  
Nermeen Abu Khalaf ◽  
Preethi Cherian ◽  
Sina Kavalakatt ◽  
...  

Abstract Background It is well known that Angiopoietin like protein (ANGPTL) mainly 3, 4 and 8 play a major role in maintaining energy homeostasis by regulating lipoprotein lipase (LPL) activity, which is a key regulator of triglyceride (TG) metabolism. Our aim is to evaluate the level of ANGPTL3, 4 and 8 in mice maintained under cold conditions in the liver, brown adipose tissue (BAT), and white adipose tissue (WAT). Methods C57BL/6J mice were exposed to cold temperature at 4˚C over a period of ten days with food given ad libitum. Animal tissues were harvested at days 0, 1, 3, 5, and 10 (cold treatment groups, n = 10 in each group, control, n = 5). Liver, subcutaneous adipose tissue (SAT), and BAT were used to investigate the expression level of different genes. ANGPTL3, 4 and 8 genes expression were measured in liver. ANGPTL4, 8 and UCP1 were measured in SAT and BAT. Results ANGPTL 3 and 8 gene expression levels were significantly reduced in mice liver tissues after cold treatment (P-value < 0.05). However, the gene expression level of ANGPTL4 was not significantly changed. In BAT, ANGPTL8 expression was not changed after cold treatment while ANGPTL4 was significantly reduced (P-value < 0.05). ANGPTL4 level was also significantly reduced in SAT, whereas the gene expression level of ANGPTL8 showed over a 5-fold increase. Similarly, the UCP1 gene expression was also significantly increased in SAT. Additionally, protein overexpression of ANGPTL8 was further confirmed by immunohistochemistry after extended cold treatment. Conclusion Our data shows that ANGPTL proteins are inhibited in the liver and BAT under cold treatment. This agrees with other studies that showed that reduction in ANGPTL4 in BAT improved thermogenesis in response to acute cold exposure. However, in our study we also observed that ANGPTL8 is activated under these conditions in SAT. This suggests that it might be involved in the regulation of lipolysis as well as enhancing SAT browning.


2020 ◽  
Vol 44 (11) ◽  
pp. 2323-2334
Author(s):  
Belén Chanclón ◽  
Yanling Wu ◽  
Milica Vujičić ◽  
Marco Bauzá-Thorbrügge ◽  
Elin Banke ◽  
...  

Abstract Background/objectives Visceral adiposity is associated with increased diabetes risk, while expansion of subcutaneous adipose tissue may be protective. However, the visceral compartment contains different fat depots. Peripancreatic adipose tissue (PAT) is an understudied visceral fat depot. Here, we aimed to define PAT functionality in lean and high-fat-diet (HFD)-induced obese mice. Subjects/methods Four adipose tissue depots (inguinal, mesenteric, gonadal, and peripancreatic adipose tissue) from chow- and HFD-fed male mice were compared with respect to adipocyte size (n = 4–5/group), cellular composition (FACS analysis, n = 5–6/group), lipogenesis and lipolysis (n = 3/group), and gene expression (n = 6–10/group). Radioactive tracers were used to compare lipid and glucose metabolism between these four fat depots in vivo (n = 5–11/group). To determine the role of PAT in obesity-associated metabolic disturbances, PAT was surgically removed prior to challenging the mice with HFD. PAT-ectomized mice were compared to sham controls with respect to glucose tolerance, basal and glucose-stimulated insulin levels, hepatic and pancreatic steatosis, and gene expression (n = 8–10/group). Results We found that PAT is a tiny fat depot (~0.2% of the total fat mass) containing relatively small adipocytes and many “non-adipocytes” such as leukocytes and fibroblasts. PAT was distinguished from the other fat depots by increased glucose uptake and increased fatty acid oxidation in both lean and obese mice. Moreover, PAT was the only fat depot where the tissue weight correlated positively with liver weight in obese mice (R = 0.65; p = 0.009). Surgical removal of PAT followed by 16-week HFD feeding was associated with aggravated hepatic steatosis (p = 0.008) and higher basal (p < 0.05) and glucose-stimulated insulin levels (p < 0.01). PAT removal also led to enlarged pancreatic islets and increased pancreatic expression of markers of glucose-stimulated insulin secretion and islet development (p < 0.05). Conclusions PAT is a small metabolically highly active fat depot that plays a previously unrecognized role in the pathogenesis of hepatic steatosis and insulin resistance in advanced obesity.


1994 ◽  
Vol 266 (6) ◽  
pp. E993-E1000 ◽  
Author(s):  
S. C. Blair ◽  
I. D. Caterson ◽  
G. J. Cooney

The effect of adrenalectomy (ADX) on body weight, lipogenesis, and glucose tolerance was investigated in mice made obese by a single intraperitoneal injection of gold-thioglucose (GTG). Five weeks after ADX the weight of GTG-obese mice was significantly decreased (GTG-obese+sham-ADX: 39.8 +/- 0.8 g; GTG-obese+ADX: 27.6 +/- 1.1 g; P < 0.05). ADX also reduced serum glucose (GTG-obese+sham-ADX: 16.5 +/- 0.6 mmol/l; GTG-obese+ADX: 10.8 +/- 0.5 mmol/l; P < 0.05) and serum insulin concentrations (GTG-obese+sham-ADX: 197 +/- 36 microU/ml; GTG-obese+ADX: 38 +/- 7 microU/ml; P < 0.05) of fed GTG-obese mice and greatly improved glucose tolerance. ADX lowered liver glycogen content and reduced the fatty acid content of liver, epididymal white adipose tissue (WAT), and interscapular brown adipose tissue (BAT) of fed GTG-obese mice. Lipid synthesis in liver and WAT of GTG-obese mice was decreased by ADX, but lipogenesis in BAT was increased, possibly to provide substrate for increased thermogenesis in this tissue. Effects of ADX on metabolism were not confined to GTG-injected mice, as ADX also reduced body weight and altered the glucose tolerance of age-matched control mice. ADX increased lipid synthesis in liver, WAT, and BAT of fed control mice without an increase in lipid deposition, indicating that there was increased lipid turnover in these lipogenic tissues of ADX mice. ADX reduced the fasting blood glucose concentration of both control and GTG-obese mice to a level below that of sham-ADX control mice (sham-ADX control: 6.0 +/- 0.4 mM; ADX control: 2.9 +/- 0.5 mM; ADX GTG-obese: 3.3 +/- 0.2 mM).(ABSTRACT TRUNCATED AT 250 WORDS)


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 796 ◽  
Author(s):  
Andrea Gille ◽  
Bojan Stojnic ◽  
Felix Derwenskus ◽  
Andreas Trautmann ◽  
Ulrike Schmid-Staiger ◽  
...  

Phaeodactylum tricornutum (P. tricornutum) comprise several lipophilic constituents with proposed anti-obesity and anti-diabetic properties. We investigated the effect of an ethanolic P. tricornutum extract (PTE) on energy metabolism in obesity-prone mice fed a high fat diet (HFD). Six- to eight-week-old male C57BL/6J mice were switched to HFD and, at the same time, received orally placebo or PTE (100 mg or 300 mg/kg body weight/day). Body weight, body composition, and food intake were monitored. After 26 days, blood and tissue samples were collected for biochemical, morphological, and gene expression analyses. PTE-supplemented mice accumulated fucoxanthin metabolites in adipose tissues and attained lower body weight gain, body fat content, weight of white adipose tissue (WAT) depots, and inguinal WAT adipocyte size than controls, independent of decreased food intake. PTE supplementation was associated with lower expression of Mest (a marker of fat tissue expandability) in WAT depots, lower gene expression related to lipid uptake and turnover in visceral WAT, increased expression of genes key to fatty acid oxidation and thermogenesis (Cpt1, Ucp1) in subcutaneous WAT, and signs of thermogenic activation including enhanced UCP1 protein in interscapular brown adipose tissue. In conclusion, these data show the potential of PTE to ameliorate HFD-induced obesity in vivo.


Author(s):  
Sumiko Yoshida ◽  
Masahiro Hatasa ◽  
Yujin Ohsugi ◽  
Yosuke Tsuchiya ◽  
Anhao Liu ◽  
...  

Preventing adverse pregnancy outcomes is crucial for maternal and child health. Periodontal disease is a risk factor for many systemic diseases including adverse pregnancy outcomes, such as preterm birth and low birth weight. In addition, the administration of the periodontopathic bacterium Porphyromonas gingivalis exacerbates obesity, glucose tolerance, and hepatic steatosis and alters endocrine function in the brown adipose tissue (BAT). However, the effects of having periodontal disease during pregnancy remain unclear. Thus, this study investigates the effect of P. gingivalis administration on obesity, liver, and BAT during pregnancy. Sonicated P. gingivalis (Pg) or saline (Co) was injected intravenously and administered orally to pregnant C57BL/6J mice three times per week. Maternal body weight and fetal body weight on embryonic day (ED) 18 were evaluated. Microarray analysis and qPCR in the liver and BAT and hepatic and plasma triglyceride quantification were performed on dams at ED 18. The body weight of Pg dams was heavier than that of Co dams; however, the fetal body weight was decreased in the offspring of Pg dams. Microarray analysis revealed 254 and 53 differentially expressed genes in the liver and BAT, respectively. Gene set enrichment analysis exhibited the downregulation of fatty acid metabolism gene set in the liver and estrogen response early/late gene sets in the BAT, whereas inflammatory response and IL6/JAK/STAT3 signaling gene sets were upregulated both in the liver and BAT. The downregulation of expression levels of Lpin1, Lpin2, and Lxra in the liver, which are associated with triglyceride synthesis, and a decreasing trend in hepatic triglyceride of Pg dams were observed. P. gingivalis administration may alter lipid metabolism in the liver. Overall, the intravenous and oral administration of sonicated P. gingivalis-induced obesity and modified gene expression in the liver and BAT in pregnant mice and caused fetuses to be underweight.


2015 ◽  
Vol 225 (3) ◽  
pp. 181-189 ◽  
Author(s):  
Junlan Zhou ◽  
Min Cheng ◽  
Chan Boriboun ◽  
Mariam M Ardehali ◽  
Changfei Jiang ◽  
...  

Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms that promote energy expenditure can be utilized for effective therapy. Src-associated in mitosis of 68 kDa (Sam68) is potentially significant, because knockout (KO) of Sam68 leads to markedly reduced adiposity. In the present study, we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We first found that Sam68 KO mice have a significantly reduced body weight as compared to controls, and the difference is explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake; rather, they were associated with enhanced physical activity. When they were fed a high-fat diet, Sam68 KO mice gained much less body weight and fat mass than their WT littermates did, and they displayed an improved glucose and insulin tolerance. In Sam68 KO mice, the brown adipose tissue (BAT), inguinal, and epididymal depots were smaller, and their adipocytes were less hypertrophied as compared to their WT littermates. The BAT of Sam68 KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty acid oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68 KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16, and Ppargc1a genes was greater as compared to WT controls, which suggests that the loss of Sam68 also promotes WAT browning. Furthermore, in all of the fat depots of the Sam68 KO mice, the expression of M2 macrophage markers was up-regulated, and that of M1 markers was down-regulated. Thus, Sam68 plays a crucial role in controlling thermogenesis and may be targeted to combat obesity and associated disorders.


1993 ◽  
Vol 265 (1) ◽  
pp. E81-E87 ◽  
Author(s):  
A. Moriscot ◽  
R. Rabelo ◽  
A. C. Bianco

Uncoupling protein (UCP) mRNA levels were studied in the interscapular brown adipose tissue (BAT) of rats undergoing different manipulations of the adrenal function and BAT adrenergic stimulation. Adrenalectomy did not affect UCP mRNA levels for up to 8 days post-surgery. However, adrenalectomized rats underwent a greater increase in UCP mRNA levels (26%) than intact rats after 4 h of cold exposure. Administration of corticosterone (500 micrograms.100 g body wt-1.day-1 sc) to intact or adrenalectomized rats, kept at 28 degrees C, produced a marked decrease of UCP mitochondrial content and cellular mRNA levels in a time-dependent manner (30% by 12 h and 50% by 24 h). Pretreatment of intact rats with corticosterone virtually abolished the UCP mRNA response to cold and norepinephrine (NE). In contrast, when rats had been preexposed to cold for 96 h, the injection of corticosterone did not affect UCP mRNA. These results show that corticosterone is a powerful inhibitor of UCP gene expression in vivo. Corticosterone inhibits both basal gene expression at thermoneutrality and the response to adrenergic stimulation either by cold or exogenous NE, suggesting a direct action on BAT. The data further suggest that corticosterone inhibits the initial accumulation of UCP mRNA mediated by UCP gene transcription, rather than accelerating the degradation of UCP mRNA.


1989 ◽  
Vol 256 (2) ◽  
pp. R494-R500 ◽  
Author(s):  
H. Shimizu ◽  
N. S. Shargill ◽  
G. A. Bray

Animals with the viable yellow (Avy/a) gene and their corresponding lean control black mice (a/a) were adrenalectomized or sham adrenalectomized, and changes in body weight, body composition, corticosterone, and GDP-binding to mitochondria isolated from interscapular brown adipose tissue (IBAT) were measured. Adrenalectomy slowed the weight gain of both the yellow obese mice and the black lean mice, but the reduction was greater in the yellow mice. Food intake was significantly reduced in the yellow mice. Adrenalectomy in the yellow mouse was associated with an increase in lean mass and a significant decrease in weights of fat depots. Blood glucose concentrations of the adrenalectomized yellow mice were reduced to levels similar to those of lean mice, but insulin levels, although lower than sham-adrenalectomized yellow mice, remained significantly higher than in lean animals. GDP binding to IBAT mitochondria increased after adrenalectomy in both phenotypes to values that were similar. Corticosterone replacement in adrenalectomized yellow mice produced a dose-dependent increase in body weight that was associated with a decrease in muscle weight and an increase in adipose tissue weight. Both desacetyl-melanocyte-stimulating hormone (MSH) and alpha-MSH interacted with corticosterone to increase body weight gain of adrenalectomized yellow mice. Desacetyl-MSH was more effective than alpha-MSH on increasing adipose tissue and liver weights. The effects of desacetyl-MSH on food intake, weight gain, and tissue weights were independent of the adrenal gland or of corticosterone.


Sign in / Sign up

Export Citation Format

Share Document