scholarly journals Increased expression level of ANGPTL8 in White Adipose tissue under Chronic Cold Treatment

Author(s):  
Hossein Arefanian ◽  
Irina Al-Khairi ◽  
Nermeen Abu Khalaf ◽  
Preethi Cherian ◽  
Sina Kavalakatt ◽  
...  

Abstract Background It is well known that Angiopoietin like protein (ANGPTL) mainly 3, 4 and 8 play a major role in maintaining energy homeostasis by regulating lipoprotein lipase (LPL) activity, which is a key regulator of triglyceride (TG) metabolism. Our aim is to evaluate the level of ANGPTL3, 4 and 8 in mice maintained under cold conditions in the liver, brown adipose tissue (BAT), and white adipose tissue (WAT). Methods C57BL/6J mice were exposed to cold temperature at 4˚C over a period of ten days with food given ad libitum. Animal tissues were harvested at days 0, 1, 3, 5, and 10 (cold treatment groups, n = 10 in each group, control, n = 5). Liver, subcutaneous adipose tissue (SAT), and BAT were used to investigate the expression level of different genes. ANGPTL3, 4 and 8 genes expression were measured in liver. ANGPTL4, 8 and UCP1 were measured in SAT and BAT. Results ANGPTL 3 and 8 gene expression levels were significantly reduced in mice liver tissues after cold treatment (P-value < 0.05). However, the gene expression level of ANGPTL4 was not significantly changed. In BAT, ANGPTL8 expression was not changed after cold treatment while ANGPTL4 was significantly reduced (P-value < 0.05). ANGPTL4 level was also significantly reduced in SAT, whereas the gene expression level of ANGPTL8 showed over a 5-fold increase. Similarly, the UCP1 gene expression was also significantly increased in SAT. Additionally, protein overexpression of ANGPTL8 was further confirmed by immunohistochemistry after extended cold treatment. Conclusion Our data shows that ANGPTL proteins are inhibited in the liver and BAT under cold treatment. This agrees with other studies that showed that reduction in ANGPTL4 in BAT improved thermogenesis in response to acute cold exposure. However, in our study we also observed that ANGPTL8 is activated under these conditions in SAT. This suggests that it might be involved in the regulation of lipolysis as well as enhancing SAT browning.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Hossein Arefanian ◽  
Irina Al-Khairi ◽  
Nermeen Abu Khalaf ◽  
Preethi Cherian ◽  
Sina Kavalakatt ◽  
...  

Abstract Background Angiopoietin-like proteins (ANGPTL), primarily 3, 4, and 8, play a major role in maintaining energy homeostasis by regulating triglyceride metabolism. This study evaluated the level of ANGPTL3, 4, and 8 in the liver, brown adipose tissue (BAT), and subcutaneous white adipose tissue (SAT) of mice maintained under acute and chronic cold conditions. Methods C57BL/6J mice were exposed to cold temperature (4 °C) for 10 days with food provided ad libitum. Animal tissues were harvested at Day 0 (Control group, n = 5) and Days 1, 3, 5, and 10 (cold treatment groups, n = 10 per group). The expression levels of various genes were measured in the liver, SAT, and BAT. ANGPTL3, 4, and 8 expressions were measured in the liver. ANGPTL4, 8, and genes involved in browning and lipid metabolism [uncoupling protein 1 (UCP1), lipoprotein lipase (LPL), and adipose triglyceride lipase (ATGL)] were measured in SAT and BAT. Western blotting (WB) analysis and immunohistochemistry (IHC) were performed to confirm ANGPTL8 expression in these tissues. Results The expressions of ANGPTL3 and 8 mRNA were significantly reduced in mouse liver tissues after cold treatment (P < 0.05); however, the expression of ANGPTL4 was not significantly altered. In BAT, ANGPTL8 expression was unchanged after cold treatment, whereas ANGPTL4 expression was significantly reduced (P < 0.05). ANGPTL4 levels were also significantly reduced in SAT, whereas ANGPTL8 gene expression exhibited over a 5-fold increase. Similarly, UCP1 gene expression was also significantly increased in SAT. The mRNA levels of LPL and ATGL showed an initial increase followed by a gradual decrease with an increase in the days of cold exposure. ANGPTL8 protein overexpression was further confirmed by WB and IHC. Conclusions This study shows that exposure to acute and chronic cold treatment results in the differential expression of ANGPTL proteins in the liver and adipose tissues (SAT and BAT). The results show a significant reduction in ANGPTL4 in BAT, which is linked to improved thermogenesis in response to acute cold exposure. ANGPTL8 was activated under acute and chronic cold conditions in SAT, suggesting that it is involved in regulating lipolysis and enhancing SAT browning.


Author(s):  
Sumaya Ahmed ◽  
Nasser Rizk

Bile acids are significant physiological factors for digestion, solubilization, absorption, toxic metabolites and xenobiotics. In addition, bile acids are responsible of signal transduction as well as metabolic regulation that activate several receptors such as farnesoid X receptor (FXR) and the membrane G-protein receptor 5 (TGR5). Activation of TGR5 by bile acids is associated with prevention of obesity as well as ameliorating the resistance to insulin via increasing energy expenditure. The objective of this research is to investigate TGR5 gene expression level in different fat depots including visceral or epididymal adipose tissue (eWAT), brown adipose tissue and inguinal adipose tissue (iWAT) and to study the response of TGR5 gene expression to the antiobesity treatment (SFN). Three groups of male CD1 mice were used in this study; lean group fed with SCD, DIO mice on HFD and DIO obese mice treated with anti-obesity treatment. Body weight (BW) and phenotype data were evaluated by weekly including blood samples for analysis of glucose, insulin, leptin, triglycerides (TG). Total RNA was extracted from different fat depots and RT-PCR profiler array technology was used to in order to assess the mRNA expression of TGR5 and leptin. There was significant downregulation of TGR5 gene expression level in obese (DIO) mice and remarkable upregulation of TGR5 gene expression after successful weight loss in DIO mice treated with SFN in time dependent manner at 1 weeks and 4 weeks of ip applications. In conclusion, obesity is associated with decrease in expression of TGR5 in different fat depots and treatment with anti-obesity drug (Sulforaphane) causes stepwise upregulation of TGR5 gene expression in epididymal white adipose tissue parallel stepwise decrease in body weight. Increase of expression of TGR5 in DIO mice in eWAT is accompanied by improvement in glucose homeostasis and insulin action.


Author(s):  
Eric A. Wilson ◽  
Hui Sun ◽  
Zhenzhong Cui ◽  
Marshal T. Jahnke ◽  
Mritunjay Pandey ◽  
...  

The G protein subunits Gqα and G11α (Gq/11α) couple receptors to phospholipase C, leading to increased intracellular calcium. In this study we investigated the consequences of Gq/11α deficiency in the dorsomedial hypothalamus (DMH), a critical site for the control of energy homeostasis. Mice with DMH-specific deletion of Gq/11α (DMHGq/11KO) were generated by stereotaxic injection of AAV-Cre-GFP into the DMH of Gqαflox/flox:G11α-/- mice. Compared to control mice that received DMH injection of AAV-GFP, DMHGq/11KO mice developed obesity associated with reduced energy expenditure without significant changes in food intake or physical activity. DMHGq/11KO mice showed no defects in the ability of the melanocortin agonist melanotan II to acutely stimulate energy expenditure or to inhibit food intake. At room temperature (22oC) DMHGq/11KO mice showed reduced sympathetic nervous system activity in brown adipose tissue (BAT) and heart, accompanied with decreased basal BAT Ucp1 gene expression and lower heart rates. These mice were cold intolerant when acutely exposed to cold (6oC for 5 hours) and had decreased cold-stimulated BAT Ucp1 gene expression. DMHGq/11KO mice also failed to adapt to gradually declining ambient temperatures and to develop adipocyte browning in inguinal white adipose tissue although their BAT Ucp1 was proportionally stimulated. Consistent with impaired cold-induced thermogenesis, the onset of obesity in DMHGq/11KO mice was significantly delayed when housed under thermoneutral conditions (30ºC). Thus, our results show that Gqα and G11α in the DMH are required for the control of energy homeostasis by stimulating energy expenditure and thermoregulation.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1626
Author(s):  
Linjie Wang ◽  
Xingyue Chen ◽  
Tianzeng Song ◽  
Xujia Zhang ◽  
Siyuan Zhan ◽  
...  

Brown adipose tissues have unique non-shivering thermogenesis functions, can be found in newborn ruminate animals, and then are gradually replaced by white adipose tissues in adulthood. For the purpose of exploring the intrinsic mechanism underlying the conversion process from brown (BAT) to white adipose tissue (WAT), it is necessary to utilize Quantitative PCR (qPCR) to study gene expression profiling. In this study, we identified reference genes that were consistently expressed during the transformation from goat BAT to WAT using RNA-seq data. Then, twelve genes were evaluated as candidate reference genes for qPCR in goat perirenal adipose tissue using three tools (geNorm, Normfinder, and BestKeeper). In addition, the selected reference genes were used to normalize the gene expression of PGC-1α and GPAT4. It was found that traditional reference genes, such as GAPDH, RPLP0, HPRT1, and PPIA were not suitable for target gene normalization. In contrast, CTNNB, PFDN5, and EIF3M, selected from RNA sequencing data, showed the least variation and were recommended as the best reference genes during the transformation from BAT to WAT.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1603-1603
Author(s):  
Mehrnaz Abbasi ◽  
Shu Wang

Abstract Objectives Obesity and its comorbidities are major public health problems worldwide. The transformation of white adipose tissue (WAT) to brown adipose tissue (BAT); browning of WAT, may serve as a promising strategy for combating obesity. Metformin is not only the first line of drug for type 2 diabetes but also has an anti-obesity potential. Emerging evidence suggests that metformin can reduce body weight and enhance energy expenditure via activating BAT or browning of WAT. However, metformin delivery to adipose tissue is limited due to the lack of adipocyte-specific surface markers. Thus, the direct injection might be an alternative. Methods ApoE3-Leiden.human cholesteryl ester transfer protein (E3L.CETP) mice (5 mice/group) were fed a high-fat diet (HFD) for 15 weeks. From week 10 to 15, mice were randomly divided into 3 groups as 1. Metformin inguinal WAT (IgWAT) injection, 2. Metformin delivery to interscapular BAT (IBAT) and 3. Saline IgWAT injection (HFD control). Mice received injections twice per week (40 mg/kg/week). Bodyweight (BW), body composition, food intake, energy expenditure and glucose tolerance test (GTT) were measured. Gene expression of beige or brown makers was analyzed using real time-PCR. Results Compared to HFD control mice, IgWAT- and IBAT-treated mice lost 2.16% and 1.9% more of their body fat, respectively (P-value &lt; 0.001). IgWAT- and IBAT-treated mice had 1.09- and 1.24-fold lower area under the curve calculated from the GTT time course than HFD control mice, respectively, but the differences were not statistically significant. The metabolic cage data indicated that both IgWAT- and IBAT-treated mice compared to HFD control mice had significantly decreased respiration exchange ratio (RER) (P &lt; 0.0001). IgWAT-treated mice had significantly lower IgWAT weight than the HFD control mice (P &lt; 0.05). IgWAT-treated compared to HFD control mice had 1.5-, 2-, 2.7- and 3-fold higher expression of UCP1, PRDM16, TMEM26 and Elovl3 in IgWAT, respectively. Conclusions This study demonstrated that local delivery of metformin to IgWAT and IBAT decreased BW and fat mass, which were associated with reduced RER and improved glucose homeostasis. Direct delivery of metformin to IgWAT and IBAT might be an efficient approach for combating obesity via inducing IgWAT browning and enhancing IBAT activity. Funding Sources NIH 1R15AT010395 and AHA 19AIREA34480011.


Endocrinology ◽  
2003 ◽  
Vol 144 (8) ◽  
pp. 3547-3554 ◽  
Author(s):  
Takayuki Masaki ◽  
Go Yoshimichi ◽  
Seiichi Chiba ◽  
Tohru Yasuda ◽  
Hitoshi Noguchi ◽  
...  

Abstract To examine the functional role of CRH in the regulation of energy homeostasis by leptin, we measured the effects of the CRH antagonist, α-helical CRH 8–41 (αCRH) on a number of factors affected by leptin activity. These included food intake, body weight, hypothalamic c-fos-like immunoreactivity (c-FLI), weight and histological characterization of white adipose tissue, and mRNA expressions of uncoupling protein (UCP) in brown adipose tissue (BAT) in C57Bl/6 mice. Central infusion of leptin into the lateral cerebroventricle (icv) caused significant induction of c-FLI in the paraventricular nucleus (PVN), ventromedial hypothalamic nucleus (VMH), dorsomedial hypothalamic nucleus, and arcuate nucleus. In all these nuclei, the effect of leptin on expression of cFLI in the PVN and VMH was decreased by treatment with αCRH. Administration of leptin markedly decreased cumulative food intake and body weight with this effect being attenuated by pretreatment with αCRH. In peripheral tissue, leptin up-regulated BAT UCP1 mRNA expression and reduced fat depositions in this tissue. Those changes in BAT were also decreased by treatment with αCRH. As a consequence of the effects on food intake or energy expenditure, treatment with αCRH attenuated the leptin-induced reduction of body adiposity, fat cell size, triglyceride contents, and ob mRNA expression in white adipose tissue. Taken together, these results indicate that CRH neurons in the PVN and VMH may be an important mediator for leptin that contribute to regulation of feeding, adiposity, and UCP expression.


Author(s):  
Yunlu Sheng ◽  
Fan Xia ◽  
Lei Chen ◽  
Yifan Lv ◽  
Shan Lv ◽  
...  

Abstract Age-related adipose tissue dysfunction is potentially important in the development of insulin resistance and metabolic disorder. Caloric restriction (CR) is a robust intervention to reduce adiposity, improve metabolic health, and extend healthy life span. Both white adipose tissue (WAT) and brown adipose tissue (BAT) are involved in energy homeostasis. CR triggers the beiging of WAT in young mice; however, the effects of CR on beiging of WAT and function of BAT during aging are unclear. This study aimed to investigate how age and CR impact the beiging of WAT, the function of BAT, and metabolic health in mice. C57BL/6 mice were fed CR diet (40% less than the ad libitum [AL] diet) for 3 months initiated in young (3 months), middle-aged (12 months), and old (19 months) stage. We found age-related changes in different types of adipose tissue, including adipocyte enlargement, declined beiging of WAT, and declined thermogenic and β-oxidational function of BAT. Moreover, CR attenuated age-associated adipocyte enlargement and prevented the age-related decline in beiging potential of WAT. These protective effects on the beiging potential were significant in inguinal WAT at all three ages, which were significant in epididymal WAT at young and old age. In contrast, thermogenic and β-oxidational function of BAT further declined after CR in the young age group. In conclusion, our findings reveal the contribution of WAT beiging decline to age-related metabolic disorder and suggest nutritional intervention, specifically targeting WAT beiging, as an effective approach to metabolic health during aging.


2002 ◽  
Vol 282 (1) ◽  
pp. R114-R121 ◽  
Author(s):  
Gregory E. Demas ◽  
Robert R. Bowers ◽  
Timothy J. Bartness ◽  
Thomas W. Gettys

Siberian hamsters exhibit seasonal fluctuations in white adipose tissue (WAT) mass, with peaks in long “summerlike” days (LDs) and nadirs in short “winterlike” days (SDs). These responses can be mimicked in the laboratory after transfer from LDs to SDs. The purpose of the present study was to test whether changes in WAT and brown adipose tissue (BAT) gene expression that are mediated by the sympathetic nervous system in other obesity models are also associated with seasonal adiposity changes in Siberian hamsters. SDs decreased WAT mass and leptin mRNA, increased WAT β3-adrenoceptor mRNA, and induced retroperitoneal WAT uncoupling protein-1 mRNA (the latter measured by RT-PCR, others measured by ribonuclease protection assay) while increasing BAT uncoupling protein-1 and peroxisome proliferator-activated receptor-γ coactivator-1 mRNAs. These effects were not due to SD-induced gonadal regression and largely occurred before the usual SD-induced decreases in food intake. Thus the SD-induced decreased adiposity of Siberian hamsters may be due to a coordinated suite of WAT and BAT gene transcription changes ultimately increasing lipid mobilization and utilization.


PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0180378 ◽  
Author(s):  
Shila Ghazanfar ◽  
Tony Vuocolo ◽  
Janna L. Morrison ◽  
Lisa M. Nicholas ◽  
Isabella C. McMillen ◽  
...  

1995 ◽  
Vol 311 (3) ◽  
pp. 729-733 ◽  
Author(s):  
P Trayhurn ◽  
J S Duncan ◽  
D V Rayner

The effect of acute exposure to cold on the expression of the ob (obese) gene, which encodes a protein that plays a critical role in the regulation of energy balance and body weight, has been examined in epididymal white adipose tissue of mice. Overnight (18 h) exposure of mice to a temperature of 4 degrees C led to the disappearance of ob mRNA in epididymal white fat, and subsequent studies showed that a cold-induced loss of ob mRNA could occur in as little as 2-4 h of exposure to 4 degrees C. When mice exposed to cold for 18 h were returned to the warm (24 degrees C), there was a rapid stimulation of the expression of the ob gene, the mRNA returning within 2.5 h. Administration of noradrenaline led to a reduction in the level of ob mRNA in mice maintained in the warm, while isoprenaline resulted in the disappearance of the mRNA; these changes in ob mRNA were paralleled by similar changes in lipoprotein lipase mRNA. In contrast to white fat, the level of lipoprotein lipase mRNA in brown adipose tissue was increased by noradrenaline and isoprenaline. It is concluded that there is a cold-induced suppression of ob gene expression in white adipose tissue of mice and that this is mediated primarily by the sympathetic system. The profound effect of cold on ob gene expression indicates that the ob system relates to energy expenditure, as well as to satiety.


Sign in / Sign up

Export Citation Format

Share Document