scholarly journals STUDY OF VARIOUS FIVE EXTRACTS OF TRACHYSPERMUM AMMI SEEDS ON SELECTED FOUR GRAM-NEGATIVE COOKED FOOD SPOILAGE BACTERIAL STRAINS BY DISK DIFFUSION METHOD

Author(s):  
Usha Masih

Bacterial foodborne diseases are caused by consumption of foods contaminated with bacteria or their toxins. This study evaluated antibacterial properties of Trachyspermum ammi Acetone, ethanol, methanol, cold water and hard water extracts of spice (Ajowan) seeds against four gram negative strains of pathogenic foodborne bacteria, E. coli O157:H7   ATCC 43888, ATCC 25922, ATCC 8739 and ATCC 43895 that cause infection and intoxication. E. coli ATCC 43888 was observed to be highly susceptible to all extracts of ajowan with absolute zones of inhibition in the range of 16mm – 23mm in diameter. This study demonstrated that spice extracts have antimicrobial activity against food-borne bacterial species and should be considered as potential antibacterial agents for addition to ready meals. The spice contain high amount of secondary metabolites due to these metabolites they have high antimicrobial activity and it can be used as good bio- preserver and it can also use for medicinal purpose.

INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (07) ◽  
pp. 5-9
Author(s):  
R. G Ingle ◽  
◽  
S. J. Wadher

A set of ten new 2,3-diphenyl-6-sulfonamido quinoxaline derivatives was synthesized and screened for antimicrobial activity by disk diffusion method. Test derivatives R3, R5, R’’1 and R’’2 show promising results against bacterial strains S. aureus gram positive and E. coli gram negative organism with the concentration 1000 μg/mL in disk diffusion method. Rest of the derivatives show sensitivity against the same organisms. All the synthesized derivatives were confirmed by their spectral data.


2015 ◽  
Vol 10 (4) ◽  
pp. 765 ◽  
Author(s):  
Alia Erum ◽  
Sajid Bashir ◽  
Shazia Saghir

<p class="Abstract">Arabinoxylan is a polysaccharide of<em> Plantago ovata</em>, an indigenous plant of Pakistan and several European countries. In the present investigation arabinoxylan isolated from <em>P. ovata</em> husk was chemically modified i.e., carboxymethylated and was converted into its sodium salt. Physicochemical characterization of modified arabinoxylans was done. The antimicrobial assay of arabinoxylan and modified arabinoxylans was done by Kirby-Bauer disk diffusion method against Gram negative and Gram positive bacterial strains. Physicochemical properties of modified arabinoxylans were different from arabinoxylan yet were satisfactory for their use as pharmaceutical excipients.  Arabinoxylan showed strong antimicrobial activity against Gram positive strains.  However, it showed no antimicrobial activity against Gram negative strains. Carboxymethyl arabinoxylan showed maximum activity against<em> S. epidermidis</em>. It also showed activity against <em>S. aureus</em> and <em>P. aeruginosa</em>.  Arabinoxylan-Na showed concentration-dependent antimicrobial activity. This study provides the first report on the antibacterial properties of arabinoxylan and its modified forms.</p><p> </p>


Author(s):  
SHIBU GEORGE ◽  
MEVLIN JOY

Objective: The objective of this study was to evaluate the antimicrobial activity of methanolic extract of Ludwigia parviflora L. using standard bacterial strains and compare its activity with that of standard antibiotics. Methods: The antibacterial activity and antibiotic susceptibility tests were done by disk diffusion method using MTCC bacterial strains. Results: The study revealed that the methanolic extract of the whole plant of L. parviflora L. was effective to inhibit the growth of Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Among the tested strains, S. aureus, P. aeruginosa, K. pneumoniae, and E. coli were more susceptible to the methanolic extract of L. parviflora than the commonly using antibiotic tetracycline 30 mcg. The activity of methanolic extract was also higher than the activity of gentamicin 10 mcg against the P. aeruginosa. Conclusion: The study concluded that the crude methanolic extract of the whole plant of L. parviflora L. is a good source for antibacterial agent against S. aureus, P. aeruginosa, K. pneumoniae, and E. coli. Hence, this plant can be used as a natural alternative to the common antibiotics such as gentamicin and tetracycline against common bacterial infections after validating its pharmacological and toxicological activities.


2015 ◽  
Vol 43 (2) ◽  
pp. 327-334 ◽  
Author(s):  
Mihaela NICULAE ◽  
Laura STAN ◽  
Emoke PALL ◽  
Anamaria Ioana PAȘTIU ◽  
Iulia Maria BALACI ◽  
...  

The study was aimed to characterize the chemical composition and the antimicrobial activity of Romanian propolis ethanolic extracts (EEP) against antibiotic-sensitive and antibiotic-resistant E. coli strains isolated from bovine mastitis. The preliminary antimicrobial screening was performed by a disk diffusion method, followed by determination of minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) based on broth microdilution assay; further, the synergistic action of propolis with antimicrobial drugs was assessed by a disk diffusion method on agar containing subinhibitory concentrations of propolis. For the chemical characterisation of EEP, the flavonoids (flavones/flavonols, flavanones/dihydroflavonols) and total phenolics were evaluated by spectrophotometric methods. The phenolic compounds of these extracts were also determined using HPLC. The results indicated for Romanian propolis ethanolic extracts the typical poplar composition profile with flavonoids and phenolic acids as main biological active compounds, with chromatographic analysis data confirmed also spectrophotometrically. In addition, positively correlated with the chemical composition, a strong antimicrobial efficacy was exhibited towards E. coli strains, along with interesting synergistic interaction with antibiotics that can be further investigated to obtain propolis-based formulation with antibacterial properties. Subsequent in vitro and in vivo studies evaluating the safety and efficacy are intended to consider propolis in veterinary therapeutic protocols.


2016 ◽  
Vol 60 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Lia M. Junie ◽  
Mihaela L. Vică ◽  
Mirel Glevitzky ◽  
Horea V. Matei

AbstractThe first aim of the study was to compare the antibacterial activity of several types of honey of different origins, against some bacterial resistant strains. The strains had been isolated from patients. The second aim was to discover the correlations between the antibacterial character of honey and the physico-chemical properties of the honey. Ten honey samples (polyfloral, linden, acacia, manna, and sunflower) from the centre of Romania were tested to determine their antibacterial properties against the following bacterial species: Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella enterica serovar Typhimurium, Bacillus cereus, Bacillus subtilis, and Listeria monocytogenes. Bacterial cultures in nutrient broth and the culture medium Mueller-Hinton agar were used. The susceptibility to antibiotics was performed using the disk diffusion method. All honey samples showed antibacterial activity on the isolated bacterial strains, in particular polyfloral (inhibition zone 13-21 mm in diameter) - because it is the source of several plants, and manna (inhibition zone 13-19.5 mm in diameter), and sunflower (inhibition zone 14-18.5 mm in diameter). Pure honey has a significant antibacterial activity against some bacteria which are resistant to antibiotics. Bacterial strains differed in their sensitivity to honeys. Pseudomonas aeruginosa and Staphylococcus aureus were the most sensitive. The present study revealed that honey antibacterial activity depends on the origin of the honey. We also found that there was a significant correlation between antibacterial activity of honeys and the colour of the honey but not between acidity and pH. The statistical analysis showed that the honey type influences the antibacterial activity (diameter of the bacterial strains inhibition zones).


Author(s):  
Mohamed Sabri Khelfaoui ◽  
Rayane Zeroug ◽  
Maroua Yousfi ◽  
Bouchra Satha

Background: Urinary tract infections (UTIs) are a serious world-wide health problem whose treatment becomes highly difficult due to the emergence of antibiotic-resistant bacterial strains. Aims: Herein, a retrospective study was conducted with the aim to determine the prevalence, the identification of the bacteria responsible of UTIs, and the antimicrobial resistance profile. Study Design: All Patient samples, including either external samples or samples taken from patients admitted to Public Hospital Establishment “Saad Guermech Saoudi Amar Hmaida” in Skikda-Algeria were used in this study for a period extending from January 2018 – March 2020. Methodology: The identification of bacterial strains and the antibiotic susceptibility testing was carried out using Analytical Profile index galleries (API) system and disk diffusion method. Results: Among the 1203 samples, 206 (17.12%) were positive, and 997 (82.88%) were negative for bacterial growth. Regarding the pathogenic strains, 26 (12.62%), and 180 (87.38%) were found respectively, Gram-positive and Gram-negative strains. Among the 180 Gram negative strains, 104 (57.83%) were reported in female patients, 68 (37.72%) were in male patients, and 8 (4.45%) whose gender was not mentioned. The most representative Gram-negative strains are Escherichia coli (E. coli) (43.33%), Klebsiella pneumoniae (K. pneumoniae) (13.33%), Proteus mirabilis (P. mirabilis) (7.77%), Enterobacter sp (E. sp) (6.66%), since the other strains were less frequent. Moreover, 6 bacterial strains belonging to 3 genera (Escherichia, Klebsiella, and Enterobacter) were ESBLs producers with an overall prevalence of 3.33% of pathogenic strains isolated from urine. ESBLs were produced in 4.00%, 5.88%, and 6.25% of E. coli, K. pneumoniae, and E. cloacae strains respectively. Conclusion: E. coli was found to be the most predominant strain, while most of the Gram- negative strains were highly resistant to Amoxicillin/clavulanic acid, Ampicillin, penicillin and tobramycin.


Author(s):  
Singh Gurvinder ◽  
Singh Prabhsimran ◽  
Dhawan R. K.

In order to develop new antimicrobial agents, a series of 3-formyl indole based Schiff bases were synthesized by reacting 3-formyl indole(indole-3-carboxaldehyde) with substituted aniline taking ethanol as solvent. The reaction was carried in the presence of small amount of p-toluene sulphonic acid as catalyst.All the synthesized compounds were characterized by IR, 1H-NMR spectral analysis. All the synthesized compounds were evaluated for antimicrobial activity against two gram positive bacterial strains (B. subtilisand S. aureus) and two gram negative bacterial strains (P. aeruginosaand E. coli) and one fungal strain (C. albicans). All the synthesized compounds were found to have moderate to good antimicrobial activity. The  standard drug amoxicillin, fluconazole were used for antimicrobial activity. Among the synthesized compounds, the maximum antimicrobial activity was shown by compounds GS04, GS07, GS08 and GS10.


Author(s):  
Amita Shobha Rao ◽  
Shobha Kl ◽  
Prathibha Md’almeida ◽  
Kiranmai S Rai

  Objective: Infections caused by Gram-negative bacteria are important causes of morbidity and mortality. Extracts of plants and herbs such as Clitorea ternatea are used as diuretic. This work attempts to find out antimicrobial activity of aqueous and alcoholic extract of C. ternatea roots against Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), clinical strains of Klebsiella pneumoniae, and Candida albicans.Methods: The agar well-diffusion method was done using Mueller Hinton agar and Sabouraud’s dextrose agar. The microorganism grown in peptone water was inoculated into culture medium. 4 mm diameter well punched into the agar was filled with 20 μl of aqueous and alcoholic root extracts C. ternatea extracts in various concentrations (100-25 μg/ml). The plates were incubated and antimicrobial activity was evaluated.Results: Aqueous root extract of C. ternatea with the concentration of 100 μg/ml showed zone of inhibition against E. coli (ATCC 25922) 18 mm, P. aeruginosa (ATCC 27853) 14 mm, multidrug resistant strain of K. pneumoniae 15 mm. Alcoholic extract of C. ternatea with the concentration of 100 μg/ml showed zone of inhibition of 35 mm against E. coli (ATCC 25922), P. aeruginosa (ATCC 27853) 22 mm, and multidrug resistant strain of K. pneumoniae 28 mm. C. albicanswas resistant to both extract of C. ternatea root. Conclusions: Alcoholic extract of C. ternatea is a better antibacterial agent against multidrug resistant Klebsiella species and other Gram-negative pathogens. Further, studies are required to identify active substances from the alcoholic extracts of C. ternatea for treating infections.


2013 ◽  
Vol 14 (5) ◽  
pp. 924-929 ◽  
Author(s):  
Reena Kulshrestha ◽  
J Kranthi ◽  
P Krishna Rao ◽  
Feroz Jenner ◽  
V Abdul Jaleel ◽  
...  

ABSTRACT Aim The present study was conducted to evaluate the efficacy of commercially available herbal toothpastes against the different periodontopathogens. Materials and methods Six herbal toothpastes that were commonly commercially available were included in the study. Colgate herbal, Babool, Meswak, Neem active, Dabur red toothpastes were tested for the study whereas sterile normal saline was used as control. Antimicrobial efficacies of dentifrices were evaluated against Streptococcus mutans and Actinobacillus actinomycetemcomitans. The antimicrobial properties of dentifrices were tested by measuring the maximum zone of inhibition at 24 hours on the Mueller Hinton Agar media inoculated with microbial strain using disk diffusion method. Each dentifrice was tested at 100% concentration (full strength). Results The study showed that all dentifrices selected for the study were effective against the entire test organism but to varying degree. Neem active tooth paste gave a reading of 25.4 mm as the zone of inhibition which was highest amongst all of the test dentifrices. Colgate Herbal and Meswak dentifrices recorded a larger maximum zone of inhibition, measuring 23 and 22.6 mm respectively, compared to other toothpastes. All other dentifrices showed the zone of inhibition to be between 17 and 19 mm respectively. Conclusion The antibacterial properties of six dentifrices were studied in vitro and concluded that almost all of the dentifrices available commercially had antibacterial properties to some extent to benefit dental health or antiplaque action. How to cite this article Jenner F, Jaleel VA, Kulshrestha R, Maheswar G, Rao PK, Kranthi J. Evaluating the Antimicrobial Activity of Commercially Available Herbal Toothpastes on Microorganisms Associated with Diabetes Mellitus. J Contemp Dent Pract 2013;14(5):924-929.


2019 ◽  
Vol 12 (5) ◽  
pp. 629-637 ◽  
Author(s):  
Sarah Rose Fitzpatrick ◽  
Mary Garvey ◽  
Kieran Jordan ◽  
Jim Flynn ◽  
Bernadette O'Brien ◽  
...  

Background and Aim: Teat disinfection is an important tool in reducing the incidence of bovine mastitis. Identifying the potential mastitis-causing bacterial species in milk can be the first step in choosing the correct teat disinfectant product. The objective of this study was to screen commercial teat disinfectants for inhibition against mastitis-associated bacteria isolated from various types of milk samples. Materials and Methods: Twelve commercially available teat disinfectant products were tested, against 12 mastitis-associated bacteria strains isolated from bulk tank milk samples and bacterial strains isolated from clinical (n=2) and subclinical (n=3) quarter foremilk samples using the disk diffusion method. Results: There was a significant variation (7-30 mm) in bacterial inhibition between teat disinfection products, with products containing a lactic acid combination (with chlorhexidine or salicylic acid) resulting in the greatest levels of bacterial inhibition against all tested bacteria (p<0.05). Conclusion: In this study, combined ingredients in teat disinfection products had greater levels of bacterial inhibition than when the ingredients were used individually. The disk diffusion assay is a suitable screening method to effectively differentiate the bacterial inhibition of different teat disinfectant products.


Sign in / Sign up

Export Citation Format

Share Document