scholarly journals PERFORMANCE OF UPLAND NERICA AND NON -NERICA RICE ENOTYPES IN MULTI-ENVIRONMENT YIELD TRIALS AS ANALYSED USING GGEBIPLOT MODEL

2016 ◽  
Vol 4 (3) ◽  
pp. 146-158
Author(s):  
Sewagegne Tariku ◽  
Tadesse Lakew

Ten upland New Rice for Africa (NERICA) and three upland non-NERICA rice genotypes were evaluated at three locations of six environments in north western Ethiopia from 2009 to 2011 to identify stable and high yielding genotypes and mega environments. Randomized complete block design with three replications was used.  GGE biplot methodology was used for graphically display of yield data. The combined analysis of variance revealed that environment (E) accounted for 32.2% of the total variation while G and GEI captured 20.3% and 21.1%, respectively. The first 2 principal components (PC1 and PC2) were used to create a 2-dimensional GGE biplot and explained 56.9 % and 20.6% of GGE sum of squares (SS), respectively. Genotypic PC1 scores >0 detected the adaptable and/or higher-yielding genotypes, while PC1 scores <0 discriminated the non-adaptable and/or lower-yielding ones. Unlike genotypic PC1 scores, near-zero PC2 scores identified stable genotypes, whereas absolute larger PC2 scores detected the unstable ones. On the other hand, environmental PC1 scores were related to non-crossover type GEIs and the PC2 scores to the crossover type. Among the tested genotypes 3, 2, 11, 13, 8 were found to be desirable in terms of higher yielding ability and stability in descending order. Based on GGEbiplot analysis, the test environments were classified in to three mega-environments. Mega -1  included environment  WO-1 (Woreta) with  genotype 9 as  a winner; Mega-2 constituted  environments such as  WO-3 and WO-5 (Woreta)  with  genotype 2 as a winner  and  Mega-3 contained  environments including  PA-2,PA-6(Pawe)  and ME-7(Metema) with  genotype 8 as winner. However, it is not justifiable to consider two mega-environments within one specified area. So that mega environments 1 and 2 should be treated as one. The result of this study can be used as a driving force for the national rice breeding program to design breeding strategy that can address the request of different stakeholders for improved varieties. Among the tested genotypes in this study, three candidate genotypes (2, 3 and 8) were selected and verified considering their better performance. Of which, genotype 2 has been officially released for large scale production with the common name ‘’NERICA-12’’.

2018 ◽  
Vol 48 (4) ◽  
pp. 350-357 ◽  
Author(s):  
Victor Peçanha de Miranda Coelho ◽  
Kelly Martins Rosa ◽  
Paulo Eduardo Branco Paiva ◽  
Édimo Fernando Alves Moreira ◽  
Mychelle Carvalho

ABSTRACT The use of quality seedlings is important in establishing a productive coffee crop. However, the most widely used method to produce coffee seedlings is time consuming (6-12 months) and lacks new production technologies. This study aimed to assess the use of fertigation and a growth regulator in the production of coffee seedlings, in order to develop a system faster than the conventional method. For that, Topázio coffee cultivar seeds were pre-germinated and planted in tubes filled with substrate (composted pine bark), in a protected nursery. A randomized block design was used, in a 4 x 2 (fertigation levels x the use or not of growth regulator) factorial scheme, with four replications. Daily fertigation positively influenced all the growth variables evaluated. The foliar spraying of the growth regulator had little effect on seedling growth. When compared to the conventional system described in the literature, the coffee seedling production system described here reduced, by around 60 days, the production time and enables a large-scale production.


2020 ◽  
pp. 1742-1747
Author(s):  
Wellington Silva Gomes ◽  
Samy Pimenta ◽  
Poliana Soares da Cruz Mascarenhas ◽  
Luciana Cardoso Nogueira Londe ◽  
Arles Matheus Pickler de Barros do Vale ◽  
...  

The propagation of plants through stem subdivision and the incorporation of phytoregulators can be a viable and efficient technique in the large-scale production of young forage palm at a lower cost. This study was conducted in order to evaluate the influence of stem subdivision and phytoregulators on the production of young forage palms under greenhouse conditions. Three experiments (I, II and III) were performed. Experiments I and II consisted of young palm of the Miúda genotype, formed from fragmented stems submitted to solutions containing gradually increasing concentrations of benzylaminopurine (0,0; 0,5; 1,0 e 1,5 mg. L-1) and kinetin (0,0; 0,25; 0,5 e 0,75 mg. L-1) combined with naphthaleneacetic acid (1,5 mg. L-1). An additional control without the use of phytoregulators was also included. These treatments were distributed in a randomized block design (RBD), in a factorial scheme with the additional plot: 4 x 4 + 1. In experiment III, different sized fractions of four forage palm genotypes were tested: Gigante, Orelha de elefante, IPA Sertânia, and Miúda. For this test, the experimental design was RBD, with twelve treatments, distributed in five blocks with five plants per plot. There was no influence of phytoregulators on the characteristics evaluated in experiments I and II. Significant differences were found. However, for the variables length, width, and thickness of sprouts among treatments in experiment III. Therefore, the application of phytoregulators in young forage palms at the dosages used is not recommended. For the Gigante, Orelha de Elefante and Miúda genotypes, the fractional stem size recommended is 5x3 cm whereas for IPA Sertânia, the size recommended is 4x2 cm.


1993 ◽  
Vol 32 (1) ◽  
pp. 129-131
Author(s):  
Naureen Talha

The literature on female labour in Third World countries has become quite extensive. India, being comparatively more advanced industrially, and in view of its size and population, presents a pictures of multiplicity of problems which face the female labour market. However, the author has also included Mexico in this analytical study. It is interesting to see the characteristics of developing industrialisation in two different societies: the Indian society, which is conservative, and the Mexican society, which is progressive. In the first chapter of the book, the author explains that he is not concerned with the process of industrialisation and female labour employed at different levels of work, but that he is interested in forms of production and women's employment in large-scale production, petty commodity production, marginal small production, and self-employment in the informal sector. It is only by analysis of these forms that the picture of females having a lower status is understood in its social and political setting.


2018 ◽  
Vol 15 (4) ◽  
pp. 572-575 ◽  
Author(s):  
Ponnusamy Kannan ◽  
Samuel I.D. Presley ◽  
Pallikondaperumal Shanmugasundaram ◽  
Nagapillai Prakash ◽  
Deivanayagam Easwaramoorthy

Aim and Objective: Itopride is a prokinetic agent used for treating conditions like non-ulcer dyspepsia. Itopride is administered as its hydrochloride salt. Trimethobenzamide is used for treating nausea and vomiting and administered as its hydrochloride salt. The aim is to develop a novel and environmental friendly method for large-scale production of itopride and trimethobenzamide. Materials and Methods: Itopride and trimethobenzamide can be prepared from a common intermediate 4- (dimethylaminoethoxy) benzyl amine. The intermediate is prepared from one pot synthesis using Phyrdroxybenzaldehye and zinc dust and further reaction of the intermediate with substituted methoxy benzoic acid along with boric acid and PEG gives itopride and trimethobenzamide. Results: The intermediate 4-(dimethylaminoethoxy) benzylamine is prepared by treating p-hydroxybenzaldehyde and 2-dimethylaminoethyl chloride. The aldehyde formed is treated with hydroxylamine hydrochloride. The intermediate is confirmed by NMR and the purity is analysed by HPLC. Conclusion: Both itopride and trimethobenzamide were successfully synthesized by this method. The developed method is environmental friendly, economical for large-scale production with good yield and purity.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


Author(s):  
Yuting Luo ◽  
Zhiyuan Zhang ◽  
Fengning Yang ◽  
Jiong Li ◽  
Zhibo Liu ◽  
...  

Large-scale production of green hydrogen by electrochemical water splitting is considered as a promising technology to address critical energy challenges caused by the extensive use of fossil fuels. Although nonprecious...


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Rozina Rashid ◽  
Muhammad Sohail

AbstractThe capacity of different Bacillus species to produce large amounts of extracellular enzymes and ability to ferment various substrates at a wide range of pH and temperature has placed them among the most promising hosts for the industrial production of many improved and novel products. The global interest in prebiotics, for example, xylooligosaccharides (XOs) is ever increasing, rousing the quest for various forms with expanded productivity. This article provides an overview of xylanase producing bacilli, with more emphasis on their capacity to be used in the production of the XOs, followed by the purification strategies, characteristics and application of XOs from bacilli. The large-scale production of XOs is carried out from a number of xylan-rich lignocellulosic materials by chemical or enzymatic hydrolysis followed by purification through chromatography, vacuum evaporation, solvent extraction or membrane separation methods. Utilization of XOs in the production of functional products as food ingredients brings well-being to individuals by improving defense system and eliminating pathogens. In addition to the effects related to health, a variety of other biological impacts have also been discussed.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1706
Author(s):  
Zacharias Viskadourakis ◽  
Argiri Drymiskianaki ◽  
Vassilis M. Papadakis ◽  
Ioanna Ioannou ◽  
Theodora Kyratsi ◽  
...  

In the current study, polymer-based composites, consisting of Acrylonitrile Butadiene Styrene (ABS) and Bismuth Antimony Telluride (BixSb2−xTe3), were produced using mechanical mixing and hot pressing. These composites were investigated regarding their electrical resistivity and Seebeck coefficient, with respect to Bi doping and BixSb2-xTe3 loading into the composite. Experimental results showed that their thermoelectric performance is comparable—or even superior, in some cases—to reported thermoelectric polymer composites that have been produced using other complex techniques. Consequently, mechanically mixed polymer-based thermoelectric materials could be an efficient method for low-cost and large-scale production of polymer composites for potential thermoelectric applications.


Sign in / Sign up

Export Citation Format

Share Document