scholarly journals STRENGTH AND DURABILITY PERFORMANCE OF FLY ASH BASED GEOPOLYMER CONCRETE USING NANO SILICA

Author(s):  
SAMEER VYAS ◽  
Sameer Mohammad ◽  
Shilpa Pal ◽  
Neetu Singh

With the increasing infrastructure development across the globe, the demand of cement  production increases day by day. However, the production of cement is associated with the emission of large amount of CO2 causing global warming. Scientist and engineers are in search of a green eco friendly alternative  for concrete production. Geopolymers are rapidly emerging as an alternative to Portland cement as the binder of structural concrete. In this respect, the fly ash based geopolymers  shows considerable prospect for application in concrete industry as an alternative binder to the Portland cement. Development of geopolymer concrete using class F fly ash brings many advantages like; enhancing workability, durability, better strength as well as lowering the price. There is not only a reduction in the greenhouse footprint but, also considerable increase in strength and resistivity to adverse conditions. In order to enhance the performance of Geopolymer concrete, the use of  Nano-silica is  found to be suitable and practiced by researchers.  Use of Nano materials as fillers in the concrete matrix has proven effective in increasing mechanical and durability properties. This research is based on performance evaluation of geopolymer concrete using different percentage of Nano-silica.. It was observed that Geopolymer concrete  with Nano-silica ( GPC-N)  shows good compressive strength as well as  durability under aggressive conditions. The materials performance were also investigated using X-Ray Diffraction technique. (XRD). Results show that the presence of nano silica  enhanced the performance of Geopolymer concrete with respect to strength and durability purposes.  

2014 ◽  
Vol 567 ◽  
pp. 405-410 ◽  
Author(s):  
Muhd Fadhil Nuruddin ◽  
Siti Nooriza Abd. Razak

Alkali Silica Reaction (ASR) is a chemical reaction which affects both strength and durability of concrete. ASR occurs due to a chemical reaction between alkali oxides presents in the cement paste and reactive silica in aggregate. This reaction could lead to the volume expansion, cracking, loss of strength and potential failure of the concrete. This research aimed to investigate the potential alkali silica reactivity on geopolymer concrete. Specimens were prepared using Class F fly ash as binder while sodium hydroxide and sodium silicate as alkaline activators. ASTM C1260 was adopted to determine potential alkali silica reactivity by measuring the length change of mortar bar as well as the decrease in compressive strength test. Results show that fly ash based geopolymer concrete is less vulnerable to ASR as the expansion of mortar bar is below the threshold of ASTM standard limit which is 0.10% of expansion. In term of strength, the geopolymer concrete did not reduced instead it increased. From the results, it has indicated that both tests ensure that the durability of geopolymer concrete is excellent and can withstand a long life span.


2013 ◽  
Vol 368-370 ◽  
pp. 1061-1065 ◽  
Author(s):  
Steve W.M. Supit ◽  
Faiz U.A. Shaikh ◽  
Prabir K. Sarker

This paper evaluates the effect of Ultrafine Fly Ash (UFFA) and nanoSilica (NS) on compressive strength of high volume fly ash (HVFA) mortar at 7 days and 28 days. Three series of mortar mixes are considered in the first part of this study. In the first series the effect of high content of class F fly ash as partial replacement of cement at 40, 50 and 60% (by wt.) are considered. While in the second and third series, the UFFA and NS are used as partial replacement of cement at 5%, 8%, 10%, 12% and 15% and 1%, 2%, 4%, 6% and 8% (by wt.) of cement, respectively. The UFFA and the NS content which exhibited highest compressive strength in the above series are used in the second part where their effects on the compressive strength of HVFA mortars are evaluated. Results show that the mortar containing 10% UFFA as partial replacement of cement exhibited the highest compressive strength at both 7 and 28 days among all UFFA contents. Similarly, the mortar containing 2% NS as partial replacement of cement exhibited the best performance. Interestingly, the use of UFFA in HVFA mortars did not improve the compressive strength. However, the use of 2% and 4% NS showed improvement in the compressive strength of HVFA mortar containing 40% and 50% fly ash at both ages. The effects of NS and UFFA on the hydration and strength development of HVFA mortar is also evaluated through X-Ray Diffraction (XRD) test. Results also show that the UFFA and NS can significantly reduce the calcium hydroxide (CH) in HVFA mortars.


In stock, because of the low carbon dioxide radiation, geopolymers are very important worldwide as a building material, unlike Portland cement. Today, nanotechnology is an indispensable feature in the field of building management. It has observed that several nanomaterials influence various properties of cement-based concrete. Fly ash-based geopolymer- concrete is an option for cement-based concrete, and nanoparticles change the properties of geopolymers. Nanomaterials, such as CNTs, nano-silica, and graphene, combined with gene polymer mortars, significantly improve their properties. NanoTiO2 , when found, acts as a photocatalyst. Particularly nanomaterials such as nanosilver act as anti-bacterial agents. The functions of several nanomaterials have been studied and discussed to change the properties of geo-polymer concrete and mortars.


2014 ◽  
Vol 699 ◽  
pp. 271-276 ◽  
Author(s):  
Siti Nooriza Abd. Razak ◽  
Muhd. Fadhil Nuruddin

Alkali Silica Reaction (ASR) is a physiochemical reaction which affects the strength and durability of concrete. ASR occurs due to a chemical reaction between alkali oxides presents in the cement paste and reactive silica in aggregate. This reaction could lead to the volume expansion, cracking, loss of strength and potential failure of the concrete. This research aimed to investigate the potential alkali silica reactivity on geopolymer concrete. Specimens were prepared using Class F fly ash as binder while sodium hydroxide and sodium silicate as alkaline activators. ASTM C1260 was adopted to determine potential alkali silica reactivity by measuring the length change of mortar bar as well as the decrease in compressive strength test. Results show that fly ash based geopolymer concrete is less vulnerable to ASR as the expansion of mortar bar is below the threshold of ASTM standard limit which is 0.10% of expansion. This test ensures that the durability of geopolymer concrete is excellent and can withstand a long life span.


Author(s):  
Kadarkarai Arunkumar ◽  
Muthiah Muthukannan ◽  
Arunachalam Suresh Kumar ◽  
Arunasankar Chithambar Ganesh ◽  
Rangaswamy Kanniga Devi

The waste disposal issues were the most severe problems that could cause global warming, which depletes the environment. The research hypothesis was to find the suitability and sustainability of utilizing the waste by-products in the invention of green geopolymer concrete to eliminate the tremendous effects caused by the wastes. Due to the increased demand for fly ash in recent years, the requirement of high alkaline activators, and elevated temperature for curing, there was a research gap to find an alternative binder. The novelty of this research was to utilize the waste wood ash, which is available plenty in nearby hotels and has an inbuilt composition of high potassium that can act as a self alkaline activator. Waste wood ash procured from the local hotels was replaced with fly ash by 0 to 100% at 10% intervals. The setting and mechanical characteristics were found on the prolonged ages to understand the influence of waste wood ash. Microstructural characterization was found using Scanning Electron Microscope and X-Ray Diffraction Analysis to define the impact of waste wood ash in the microstructure. The research findings showed that replacing 30% waste wood ash with fly ash attained better performance in setting properties and all mechanical parameters. The obtained optimum mix could provide the best alternative for fly ash in geopolymer to eliminate the economic thrust by the requirement of alkaline activators and deploy the environmental impact caused by the waste wood ash.


2014 ◽  
Vol 625 ◽  
pp. 3-6 ◽  
Author(s):  
Ahmer Ali Siyal ◽  
Lukman Ismail ◽  
Zakaria Man ◽  
Khairun Azizi Azizli

Geopolymers are fast setting binder materials possessing strength comparable with Portland cement. In this study solidification and bonding behavior of sodium hydroxide activated class F fly ash geopolymers were determined. Solidification was determined using Vicat apparatus and bonding behavior study was carried out using Fourier transform infrared spectroscopy (FTIR). The decrease in solidification time from 105 minutes to 90 minutes was observed when Na/Al ratio increased from 1 to 1.4. By changing liquid to solid (L/S) ratio from 0.154 to 0.231 initial and final setting times found to increase. FTIR results showed main peaks at 1000 cm-1and 1432 cm-1due to asymmetric stretching of Al-O/ Si-O bonds.


2019 ◽  
Vol 2 (2) ◽  
pp. 65
Author(s):  
Purwanto P. ◽  
Himawan Indarto

Portland cement production process which is the conventional concrete constituent materials always has an impact on producing carbon dioxide (CO2) which will damage the environment. To maintain the continuity of development, while maintaining the environment, Portland cement substitution can be made with more environmentally friendly materials, namely fly ash. The substitution of fly ash material in concrete is known as geopolymer concrete. Fly ash is one of the industrial waste materials that can be used as geopolymer material. Fly ash is mineral residue in fine grains produced from coal combustion which is mashed at power plant power plant [15]. Many cement factories have used fly ash as mixture in cement, namely Portland Pozzolan Cement. Because fly ash contains SiO2, Al2O3, P2O3, and Fe2O3 which are quite high, so fly ash is considered capable of replacing cement completely.This study aims to obtain geopolymer concrete which has the best workability so that it is easy to work on (Workable Geopolymer Concrete / Self Compacting Geopolymer Concrete) and obtain the basic characteristics of geopolymer concrete material in the form of good workability and compressive strength. In this study, geopolymer concrete is composed of coarse aggregate, fine aggregate, fly ash type F, and activators in the form of NaOH and Na2SiO3 Be52. In making geopolymer concrete, additional ingredients such as superplastizer are added to increase the workability of geopolymer concrete. From this research, the results of concrete compressive strength above fc' 25 MPa and horizontal slump values reached 60 to 80 centimeters.


2018 ◽  
Vol 7 (3.35) ◽  
pp. 1
Author(s):  
T. V. Arul Prakash ◽  
Dr. M. Natarajan ◽  
Dr. T. Senthil Vadivel ◽  
K. Vivek

This article presents the influence of the Recycled Concrete Aggregate (RCA) on the mechanical properties of self-compacting fly ash concrete (M30 Grade). The RCA from local construction demolition site were employed as a replacement for natural coarse aggregate (0% - 30%) in self-compacting concrete (SCC). The Viscosity modifying material used in this study was Class F fly ash. The results indicate that recycled concrete aggregate can be replaced by an optimal 25% replacement percentage in the manufacture of SCC without significantly affecting strength and durability.  


Sign in / Sign up

Export Citation Format

Share Document