Cleaner Environment Approach by the Utilization of Low Calcium Wood Ash in Geopolymer Concrete

Author(s):  
Kadarkarai Arunkumar ◽  
Muthiah Muthukannan ◽  
Arunachalam Suresh Kumar ◽  
Arunasankar Chithambar Ganesh ◽  
Rangaswamy Kanniga Devi

The waste disposal issues were the most severe problems that could cause global warming, which depletes the environment. The research hypothesis was to find the suitability and sustainability of utilizing the waste by-products in the invention of green geopolymer concrete to eliminate the tremendous effects caused by the wastes. Due to the increased demand for fly ash in recent years, the requirement of high alkaline activators, and elevated temperature for curing, there was a research gap to find an alternative binder. The novelty of this research was to utilize the waste wood ash, which is available plenty in nearby hotels and has an inbuilt composition of high potassium that can act as a self alkaline activator. Waste wood ash procured from the local hotels was replaced with fly ash by 0 to 100% at 10% intervals. The setting and mechanical characteristics were found on the prolonged ages to understand the influence of waste wood ash. Microstructural characterization was found using Scanning Electron Microscope and X-Ray Diffraction Analysis to define the impact of waste wood ash in the microstructure. The research findings showed that replacing 30% waste wood ash with fly ash attained better performance in setting properties and all mechanical parameters. The obtained optimum mix could provide the best alternative for fly ash in geopolymer to eliminate the economic thrust by the requirement of alkaline activators and deploy the environmental impact caused by the waste wood ash.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
K. Arunkumar ◽  
Muthukannan Muthiah ◽  
Suresh Kumar A. ◽  
Chithambar Ganesh A. ◽  
Kanniga Devi R.

Purpose Inefficient waste disposal technique and cement production methodology caused significant environmental impacts, leading to global warming. The purpose of the research was to invent an effective, sustainable technology to use the wastes and alternate for cement in concrete. Geopolymer technology could be the most desirable solution to use the wastes into an effective product. Design/methodology/approach The wood waste ash derived from nearby tea shops was used as an alternate binder for fly ash. The replacement of WWA with FA was varied from 0 to 100% at 10% intervals. In this research, setting and mechanical features of Geopolymer Concrete (GPC) along with Waste wood ash (WWA) was carried out. The influence of wood waste ash in the microstructure of the GPC was also assessed using scanning electron microscope and X-ray diffraction analysis. Findings The findings revealed that 30% replacement of wood waste ash was performed higher in all measured features. Besides, the formation of different phases was also observed with the inclusion of wood waste ash. Research limitations/implications The demand for fly ash was increased in recent years, and the fly-based GPC has required more alkaline solution and temperature curing. Hence, there was a research gap on finding an alternative binder for fly ash. Originality/value The research novelty was to use the wood waste ash, which has inbuilt alkaline compounds on the production of sustainable geopolymer. The finding showed that the wood waste ash could be alternate fly ash that eliminates the environmental impacts and economic thrust.


2022 ◽  
Vol 1048 ◽  
pp. 333-344
Author(s):  
K. Kumar Arun ◽  
M. Muthukannan ◽  
R. Raja Abinaya ◽  
A. Kumar Suresh

On the demand of reducing the global warming due to cement production which is used as main constituent in the production of concrete and minimizing the environmental impact caused by the waste and its disposal methods, this study was aimed. This study looked in to detail insight view on effective utilization of waste wood ash in the production of geopolymer concrete beams and columns to alternate the conventional reinforced concrete elements in construction industry. Waste wood ash is a waste by product produced in the nearby hotel and factories by burning the waste wood collected from timber industries and the ash are thrown in to land which creates a major environmental pollution. Geopolymer is a novel inorganic eco-friendly binding agent derived from alkaline solution that stimulates aluminosilicate source material (such as metakaolin, fly ash and GGBS). In this research, behaviour of beams in deflection, ductility factor, flexural strength and toughness index and columns in load carrying ability, stress strain behaviour and load-deflection behaviours were examined for three types of concretes (30% WWA – 70% Fly ash Geo-polymer concrete, Fly ash Geo-polymer concrete and Reinforced Cement Concrete). The results showed that inclusion of waste wood ash in geopolymer concrete helped in enhancing the load carrying capacity of beam and column by 42% and 28%. Further, the behaviour of structural elements in stiffness, ductility and toughness were also improved with the replacement of waste wood ash.


2019 ◽  
Vol 296 ◽  
pp. 173-179 ◽  
Author(s):  
Matěj Lédl ◽  
Lucie Galvánková ◽  
Rostislav Drochytka

This paper is focused on the effect of treatment of fly ash after selective non-catalytic reduction (SNCR) with tannin on autoclaved aerated concrete (AAC) production in order to reduce or stop ammonia leakage from the fresh mixture due to its alkalinity. A pure form of tannin and a tannin-based product „Farmatan“ were used as a treatment in dosage ranging from 0,5 g – 3 g of agent per 1 kg of fly ash. Efficient dosage was determined at 2 wt.% of fly ash by the speed of an indicator change due to gaseous ammonia diluted in water. The rheological properties of fresh mixtures were observed by consistency test in Viskomat showing that Farmatan causes delay of hydration. The results of bulk density and compressive strength testing revealed that Farmatan causes an increase of bulk density and at higher amount decreases the compressive strength because of thermal crack formation due to combined effect of delayed hydration and thixotropy. Using x-ray diffraction (XRD) analysis there were no differences in phase composition observed.


Author(s):  
K Arunkumar ◽  
M Muthukannan ◽  
A Dinesh Babu ◽  
A L Hariharan ◽  
T Muthuramalingam

Author(s):  
SAMEER VYAS ◽  
Sameer Mohammad ◽  
Shilpa Pal ◽  
Neetu Singh

With the increasing infrastructure development across the globe, the demand of cement  production increases day by day. However, the production of cement is associated with the emission of large amount of CO2 causing global warming. Scientist and engineers are in search of a green eco friendly alternative  for concrete production. Geopolymers are rapidly emerging as an alternative to Portland cement as the binder of structural concrete. In this respect, the fly ash based geopolymers  shows considerable prospect for application in concrete industry as an alternative binder to the Portland cement. Development of geopolymer concrete using class F fly ash brings many advantages like; enhancing workability, durability, better strength as well as lowering the price. There is not only a reduction in the greenhouse footprint but, also considerable increase in strength and resistivity to adverse conditions. In order to enhance the performance of Geopolymer concrete, the use of  Nano-silica is  found to be suitable and practiced by researchers.  Use of Nano materials as fillers in the concrete matrix has proven effective in increasing mechanical and durability properties. This research is based on performance evaluation of geopolymer concrete using different percentage of Nano-silica.. It was observed that Geopolymer concrete  with Nano-silica ( GPC-N)  shows good compressive strength as well as  durability under aggressive conditions. The materials performance were also investigated using X-Ray Diffraction technique. (XRD). Results show that the presence of nano silica  enhanced the performance of Geopolymer concrete with respect to strength and durability purposes.  


2021 ◽  
Vol 30 (3) ◽  
pp. 464-476
Author(s):  
Haider Owaid ◽  
Haider Al-Baghdadi ◽  
Muna Al-Rubaye

Large quantities of paper and wood waste are generated every day, the disposal of these waste products is a problem because it requires huge space for their disposal. The possibility of using these wastes can mitigate the environmental problems related to them. This study presents an investigation on the feasibility of inclusion of waste paper ash (WPA) or wood ash (WA) as replacement materials for fly ash (FA) class F in preparation geopolymer concrete (GC). The developed geopolymer concretes for this study were prepared at replacement ratios of FA by WPA or WA of 25, 50, 75 and 100% in addition to a control mix containing 100% of FA. Sodium hydroxide (NaOH) solutions and sodium silicate (Na2SiO3) are used as alkaline activators with 1M and 10M of sodium hydroxide solution.The geopolymer concretes have been evaluated with respect to the workability, the compressive strength, splitting tensile strength and flexural strength. The results indicated that there were no significant differences in the workability of the control GC mix and the developed GC mixes incorporating WPA or WA. Also, the results showed that, by incorporating of 25–50% PWA or 25% WA, the mechanical properties (compressive strength, splitting tensile strength and flexural strength) of GC mixes slightly decreased. While replacement with 75–100% WPA or with 50–100% WA has reduced these mechanical properties of GC mixes. As a result, there is a feasibility of partial replacement of FA by up to 50% WPA or 25% WA in preparation of the geopolymer concrete.


2012 ◽  
Vol 626 ◽  
pp. 861-866 ◽  
Author(s):  
Monita Olivia ◽  
Navid Moheimani ◽  
Reza Javaherdashti ◽  
Hamid R. Nikraz ◽  
Michael A. Borowitzka

Chloride is not the only main cause of corrosion of reinforced concrete structures in seawater environment. Microorganisms, such as bacteria and microalgae, in the seawater can induce microbiologically influenced corrosion (MIC) that leads to degradation of the concrete structures by formation of biofilm on the metallic surface. In this preliminary study, the impact of microalgae on the corrosion of steel reinforced bars in fly ash geopolymer concrete was studied. Corrosion potential, algae cells number, and pH measurement were carried out for fly ash geopolymer concrete and a control mix (Ordinary Portland Cement) samples. The results indicate that the corrosion potential of fly ash geopolymer concrete was influenced by the cathodic reaction during photosynthesis activities. The geopolymer concrete in algae-inoculated medium was found to be more tolerant to algal growth than the control mix (OPC concrete). There was a positive correlation between algae cell densities and the potential reading of the geopolymer.


2021 ◽  
Author(s):  
Vijayasarathy RATHANASALAM ◽  
Jayabalan PERUMALSAMI ◽  
Karthikeyan JAYAKUMAR

This work presents a novel way to examine the characteristics of fly ash, copper slag (CPS) along with the addition of Ultrafine Ground Granulated Blast Furnace Slag (UFGGBFS) based Geopolymer Concrete (GPC) for various molarities (10M, 12M and 14M). In GPC, fly ash was replaced with UFGGBFS (5 %, 10 % and 15 %) and copper slag was used as fine aggregate. Mechanical Characterization such as split tensile, flexural strength, workability and water absorption were conducted . GPC characterization and microstructural behaviour was studied  by examining X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). From experimental results this study concludes that with a rise in molarity of GPC, along with incorporation of UFGGBFS, improved the performance, densification and strength of GPC.


2016 ◽  
Vol 881 ◽  
pp. 341-345
Author(s):  
Valeria Bennack ◽  
L.V.O. Dalla Valentina ◽  
Marilena Valadares Folgueras

Economic and environmental issues are directly related to industrial processes which, not only employ natural resources but also generate by-products that may impact the environment. In order to achieve sustainable development, reducing the use of natural resources and lowering cost through adequate destination of waste becomes a crucial issue. The aim of this paper is to analyze the suitability of reusing waste (wood ash) resulting from the combustion process at wood product industries for manufacturing cement based materials used in civil engineering. The material assessed is ash from the combustion process of a wood product industry. In this study, physical and chemical properties such as grain size, mineral and chemical composition of this by-product were characterized. Thermal analysis and X-ray diffraction techniques were used for this purpose. Preliminary results show the suitability of using the waste (wood ash) for manufacturing cement based materials


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Chao-Lung Hwang ◽  
Trong-Phuoc Huynh

This research presents the engineering performance and the microstructural characterization of ecofriendly construction bricks that were produced using a binder material made from a mixture of class-F fly ash (FA) and residual rice husk ash (RHA). Unground rice husk ash (URHA) was used as a partial fine aggregate substitute (0–40%). The solid bricks of 220 × 105 × 60 mm in size were prepared by mixing FA and RHA with an alkaline solution and fine aggregates, formed by compressing the mixture in a steel mold under 35 MPa of forming pressure, and then cured at 35°C and 50% relative humidity until the required testing ages. The tests of compressive strength, water absorption, and bulk density were conducted in accordance with relevant Vietnamese standards in order to estimate the effect of the URHA content on the engineering performance of the hardened bricks. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were performed to determine the microstructure and the phase composition of the brick samples. The results show that properties of these bricks conformed to relevant Vietnamese standards. Therefore, FA and RHA are potential candidate materials for producing ecofriendly construction bricks using geopolymerization technology.


Sign in / Sign up

Export Citation Format

Share Document