MICROSTRUCTURE AND OXIDATION BEHAVIOR OF THE OXIDE DISPERSION STRENGTHENED STAINLESS STEEL 316L WITH ZIRCONIA DISPERSION

2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Syahfandi Ahda ◽  
Agus Sujatno ◽  
Diene Hairani ◽  
Nanda Shabrina ◽  
Sulistioso Giat ◽  
...  

Synthesis of the oxide dispersion sODS steels was performed by dispersing 0.5 wt % zirconia to the stainless steel SS 316L by the powder metallurgy method. The ball milling process was carried out for pre-alloying the elements continued with the consolidation performed by the compaction and sintering process using the APS (Arc Plasma Sintering). Analysis of microstructure was performed by observing the morphology, identify the phase and evaluate the oxide distribution. An oxidation test was carried out at 700oC for 8 hours using the MSB (Magnetic Suspension Balanced) apparatus to evaluate the primary oxidation curve. The same grain fineness consists of 2 dominant phases, so the presence of an austenitic phase and a ferritic phase has been analyzed from the X-Ray Diffraction pattern. The homogeneous distribution of zirconia was observed, followed by improvements in mechanical properties, which could be identified by hardness testing. The parabolic phenomenon oxidation curve was explained by the excellent high-temperature oxidation behaviour of the ODS steel, followed by the formation of  ZrO2 oxide protective thin layer.

2013 ◽  
Vol 748 ◽  
pp. 86-90 ◽  
Author(s):  
Jae Hoon Lee

Oxidation tests of 18%Cr-oxide dispersion strengthened (ODS) steels with and without 5%Al were carried out in air at 700900 °C for time period up to 540 h. No minor alloying elements affect the oxidation behavior and the Al concentration between these ODS steels is a main difference. Cr2O3and (Fe,Cr)3O4spinel oxides exist on the surface of 18Cr-ODS steel; however, the surface oxide of 18Cr5Al-ODS steel is comprised of only Al2O3. Oxidation resistance of the ODS steels exposed at 700 °C is much better than Incoloy800 of which the Cr content is larger and their oxidation behavior doesnt follow the aluminum content. These results suggest that oxide particles dispersion and grain refinement play a more critical role than alloy composition in the high-temperature oxidation resistance.


2021 ◽  
Vol 49 (1) ◽  
pp. 87-94
Author(s):  
Kumar Barath ◽  
K.M. Aravindan ◽  
Jebaraj Vinoth ◽  
Kumar Sampath

In this work, an investigation was made to analyze the surface residual stresses on additive manufactured stainless steel AISI 316L in as-built and post-treated conditions. Direct metal laser sintering was used to fabricate the metal blocks. X-ray residual stress analysis on the as-fabricated surface revealed the presence of an inhomogeneous and irregular distribution of residual stresses in the as-built condition ranging from - 30 MPa to 111 MPa. It was mainly due to the localized laser heat source that caused variations in stresses at a lattice level. Heat treatment was performed for providing relief to the residual stress from the as-built condition showed significant relief of residual stress, which was lesser than 50% compared to as-built condition. Beneficial compressive residual stress induced by shot peening and lapping resulted in high magnitude compressive stresses on the surface. Also, homogeneous distribution of residual stress was found on the peened and lapped surface layer with an average of - 531 MPa and - 554 MPa, respectively.


2013 ◽  
Vol 7 (1) ◽  
pp. 38-41 ◽  
Author(s):  
Zbigniew Oksiuta ◽  
Ewa Och

Abstract The paper presents results of the corrosion resistance of mechanically alloyed oxide dispersion strengthened 14% Cr ferritic stainless. The oxide dispersion strengthened steel was prepared by means of the powder metallurgy route that consists of mechanical alloying of a pre-alloyed argon atomized steel powder (Fe-14Cr-2W-0.3Ti) with 0.3 Y2O3 (wt%), followed by HIPping at 1150°C and annealing at 850°C for 1 h. The density of ODS ferritic steel after consolidation was about 99.0% of theoretical alloy density. The potentiodynamic corrosion tests were performed for 1h and 24 h of material exposure in a physiological saline solution. For comparison the 316 LV austenitic stainless steel was also examined. The obtained results revealed that both materials were in a passive stage, however the lower current corrosion density was measured for 316 LV steel. On the contrary, the austenitic stainless steel exhibited unstable chemical processes at the passive region. On the surface of both materials localized pitting corrosion was observed with different morphology of the cavities. A broken oxide scale with poor adhesion to the ferritic steel matrix with large number of density of localized corrosion attack was observed on the surface of the ODS steel.


Alloy Digest ◽  
2006 ◽  
Vol 55 (6) ◽  

Abstract AK Steel 441 has good high-temperature strength, an equiaxed microstructure, and good high-temperature oxidation resistance. The alloy is a niobium-bearing ferritic stainless steel. This datasheet provides information on composition, hardness, and tensile properties as well as deformation. It also includes information on high temperature performance and corrosion resistance as well as forming and joining. Filing Code: SS-965. Producer or source: AK Steel.


Alloy Digest ◽  
2009 ◽  
Vol 58 (2) ◽  

Abstract CARLSON ALLOY NITRONIC 60 is a galling- and wear-resistant austenitic stainless steel that provides a significantly lower-cost alternative to cobalt-bearing and high-nickel alloys. Corrosion resistance is superior to 304 in most media. Approximately twice the yield strength of 340 and 316. Possesses excellent high-temperature oxidation resistance and low-temperature impact resistance. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion and wear resistance as well as forming. Filing Code: SS-1029. Producer or source: G.O. Carlson Inc.


2020 ◽  
Vol 16 (4) ◽  
pp. 578-583
Author(s):  
Muhammad Asif Hussain ◽  
Adnan Maqbool ◽  
Abbas Saeed Hakeem ◽  
Fazal Ahmad Khalid ◽  
Muhammad Asif Rafiq ◽  
...  

Background: The development of new bioimplants with enhanced mechanical and biomedical properties have great impetus for researchers in the field of biomaterials. Metallic materials such as stainless steel 316L (SS316L), applied for bioimplants are compatible to the human osteoblast cells and bear good toughness. However, they suffer by corrosion and their elastic moduli are very high than the application where they need to be used. On the other hand, ceramics such as hydroxyapatite (HAP), is biocompatible as well as bioactive material and helps in bone grafting during the course of bone recovery, it has the inherent brittle nature and low fracture toughness. Therefore, to overcome these issues, a hybrid combination of HAP, SS316L and carbon nanotubes (CNTs) has been synthesized and characterized in the present investigation. Methods: CNTs were acid treated to functionalize their surface and cleaned prior their addition to the composites. The mixing of nano-hydroxyapatite (HAPn), SS316L and CNTs was carried out by nitrogen gas purging followed by the ball milling to insure the homogeneous mixing of the powders. In three compositions, monolithic HAPn, nanocomposites of CNTs reinforced HAPn, and hybrid nanocomposites of CNTs and SS316L reinforced HAPn has been fabricated by spark plasma sintering (SPS) technique. Results: SEM analysis of SPS samples showed enhanced sintering of HAP-CNT nanocomposites, which also showed significant sintering behavior when combined with SS316L. Good densification was achieved in the nanocomposites. No phase change was observed for HAP at relatively higher sintering temperatures (1100°C) of SPS and tricalcium phosphate phase was not detected by XRD analysis. This represents the characteristic advantage with enhanced sintering behavior by SPS technique. Fracture toughness was found to increase with the addition of CNTs and SS316L in HAPn, while hardness initially enhanced with the addition of nonreinforcement (CNTs) in HAPn and then decrease for HAPn-CNT-SS316L hybrid nanocomposites due to presence of SS316L. Conclusion: A homogeneous distribution of CNTs and SPS technique resulted in the improved mechanical properties for HAPn-CNT-SS316L hybrid nanocomposites than other composites and suggested their application as bioimplant materials.


2012 ◽  
Vol 15 (3) ◽  
pp. 112-122
Author(s):  
Ali H. Ataiwi ◽  
◽  
Abdul Khaliq F. Hamood ◽  
Rana A. Majed ◽  
◽  
...  

Author(s):  
M. Carraturo ◽  
G. Alaimo ◽  
S. Marconi ◽  
E. Negrello ◽  
E. Sgambitterra ◽  
...  

AbstractAdditive manufacturing (AM), and in particular selective laser melting (SLM) technology, allows to produce structural components made of lattice structures. These kinds of structures have received a lot of research attention over recent years due to their capacity to generate easy-to-manufacture and lightweight components with enhanced mechanical properties. Despite a large amount of work available in the literature, the prediction of the mechanical behavior of lattice structures is still an open issue for researchers. Numerical simulations can help to better understand the mechanical behavior of such a kind of structure without undergoing long and expensive experimental campaigns. In this work, we compare numerical and experimental results of a uniaxial tensile test for stainless steel 316L octet-truss lattice specimen. Numerical simulations are based on both the nominal as-designed geometry and the as-build geometry obtained through the analysis of µ-CT images. We find that the use of the as-build geometry is fundamental for an accurate prediction of the mechanical behavior of lattice structures.


Sign in / Sign up

Export Citation Format

Share Document