Challenges for India in agriculture and the pivotal role of R&D in meeting these

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Deepak Pental

Agriculture globally must meet the challenge of feeding a growing population while minimizing its environmental impacts. For India, there is an additional challenge of making farming profitable for small landholders. I assess the possibility of achieving low-input, high-output agriculture for India; low-input both in terms of natural resources and monetary inputs. Input, output analysis shows that bringing about low-input, high-output agriculture would require curbing the over-exploitation of groundwater resources, soil analysis-based use of fertilizers, conservation agriculture, crop diversification, and doubling of the crop and livestock productivity. Crops need to be protected from pests and pathogens, and abiotic stresses; this will require significantly increased investments in public-funded R&D. Research competency will have to be improved for an effective blending of conventional breeding with the New Plant Breeding Technologies – Marker Assisted Breeding, Genetic Engineering, and Gene Editing. Open-source R&D, collaborations within India and beyond the country with CG institutes and advanced laboratories will improve competency, allow bundling of desirable traits in locally adapted varieties/hybrids, keep the cost of seed low for the small landholders in South Asia and Africa, and overall help in achieving the United Nations SDG 2 of ‘Zero Hunger’.

2018 ◽  
Vol 1 ◽  
Author(s):  
Sanda Iepure ◽  
Nicolas Gouin ◽  
Angeline Bertin ◽  
Ana Camacho ◽  
Antonio González-Ramón ◽  
...  

Chile has large extensions of arid and semi-arid regions throughout the whole country, where the intensive demands and use of water resources, especially groundwater for irrigations and mining activities, increased dramatically over the last decades. The aquifer depletions due to water abstraction for irrigation and nutrient loads, exert major alterations of water quality, groundwater recharge and the natural renewal rate. All these factors diminish the aquifer value for the users and contribute to the degradation of groundwater as environment and habitat for fauna. This intensive use of groundwater resources in Chile brought to significant social and economic benefits, but their inadequate management resulted in negative environmental, legal and socioeconomic consequences. In this study, we aimed at providing a first assessment of environmental alterations of groundwater ecosystems from agricultural watersheds in northern Chile by specifically evaluating the effects of nitrogen and pesticide loads on groundwater communities and identifing the ecosystem service alterations due to agricultural activities. The study has been performed in a glacial aquifer from Coquimbo region; 250 km north of Santiago de Chile, the floodplain of which is dominated by agriculture (fruits tress, vineyards). Due to low regional precipitations (100-240 mm/year) the aquifer is primarily recharged by snowmelt from the Andean chain and surface runoff. The relative groundwater levels, groundwater temperature, chemical analysis of nitrogen and total phosphorus and pesticide concentrations were examined, along with the evaluation of crustacean biodiversity and spatial distribution pattern. Stygofauna taxonomic richness and the presence of stygobites have been related more to groundwater level stability than to chemical water parameters indicating that over-exploitation has a negative impact on habitat suitability for groundwater invertebrates. Groundwater biota assessment is essential in understanding the impact produced by agriculture activities on groundwater as a resource and as ecosystem, a nexus that becomes more and more widely recognized. The rationale and the preliminary results of this study are summarized in the Suppl. material 1.


2020 ◽  
Vol 13 (1) ◽  
pp. 41
Author(s):  
Anny Mulyani ◽  
Mamat Haris Suwanda

<p><strong>Abstrak</strong>. Wilayah Nusa Tenggara mempunyai lahan kering beriklim kering seluas 4,9 juta ha dengan curah hujan &lt;2.000 mm/tahun dan bulan kering 5-10 bulan, bersolum tanah dangkal dan berbatu. Sebagian lahan tersebut sudah dimanfaatkan menjadi lahan pertanian terutama jagung, akibatnya produktivitas tanaman jagung rendah dibandingkan potensi genetiknya, yaitu sekitar 2,5 ton/ha di NTT dan 5,3 ton/ha di NTB dibanding dengan potensi genetiknya 9 ton/ha. Sejak tahun 2010-2015, Badan Penelitian dan Pengembangan Pertanian telah mengembangkan inovasi teknologi pengelolaan lahan kering beriklim kering dan berbatu di beberapa kabupaten di NTT dan NTB, meliputi penyediaan sumberdaya air (dam parit, embung, tampung renteng mini, sumur dangkal), pengenalan varietas unggul baru dan budidaya tanaman pangan. Pembelajaran yang diperoleh menunjukkan bahwa penyediaan air menjadi titik ungkit untuk meningkatkan indeks pertanaman dan produktivitas tanaman. Inovasi teknologi yang dibutuhkan petani adalah, mudah diterapkan, biaya murah, dan efisien tenaga kerja mendorong berlanjutnya teknologi tersebut meskipun progam tersebut telah selesai. Pada tahun 2014-2018 telah dilaksanakan kegiatan pertanian konservasi melalui dana hibah barang dan jasa yang dikelola FAO. Prinsip dasar pertanian konservasi terdiri atas 3 pilar, yaitu olah tanah terbatas berupa lubang olah permanen, penutupan permukaan tanah, rotasi/tumpangsari. Lubang tanam tersebut diberi pupuk kandang atau kompos, dan ditanami jagung pada 4 penjuru lubang, dan ditumpangsarikan dengan berbagai kacang-kacangan atau tanaman merambat seperti labu kuning yang berfungsi sebagai penutup tanah dan penghasilan tambahan dari kacang-kacangan berumur pendek. Berdasarkan hasil analisis tanah sebelum dan sesudah implementasi pertanian konservasi menunjukkan bahwa pertanian konservasi dapat meningkatkan kesuburan tanah, retensi air dan meningkatkan produksi tanaman jagung.</p><p> </p><p><strong>Abstract</strong>. The Nusa Tenggara region has upland area with dry climate of 4.9 million ha, less than 2,000 mm annual rainfall, 5-10 dry months, shallow and rocky soils. Some of the land has been used for agricultural development, especially corn, resulting in low corn productivity of around 2.5 tons / ha in NTT and 5.3 tons / ha in NTB as compared to it genetic potential 9 tons /ha. Since 2010-2015, Indonesian Agency of Agricultural Research and Development has developed innovation of soil management technology for upland with dry climates and and rocky soils in several districts in NTT and NTB. The innovation includes the provision of water resources (dam trenches, reservoirs, mini catchments, and shallow wells), introduction of new high yielding varieties and cultivation crops. The lessons learned show that water supply is the initial point to increase cropping index and crop productivity. Technological innovations needed by farmers are easy to implement, low cost, and labor efficient thereby encourage the continuation of the technology even though the program has been completed. In 2014-2018, conservation agriculture activities were carried out through grants of goods and services managed by Food Agriculture Organization (FAO). The basic principle of conservation agriculture consists of 3 pillars, namely limited tillage in the form of permanent planting holes, cover crops, rotation / intercropping. The planting hole is given manure or compost, and planted with corn in 4 corners, and intercropped with various nuts or vines such as pumpkin that serves as a soil cover and additional income from short-lived beans. Based on the results of soil analysis before and after the implementation of conservation agriculture, it shows that conservation agriculture can increase soil fertility, water retention and increase corn crop production.</p>


2021 ◽  
Vol 36 (4) ◽  
pp. 163-176
Author(s):  
Dwi Sarah ◽  
Eko Soebowo ◽  
Nugroho Aji Satriyo

Land subsidence is a global threat to coastal areas worldwide, including the North Java coastal area. Of many areas experiencing land subsidence in North Java, the rate of land subsidence in Pekalongan has matched the high subsidence rates usually found in big cities. The rate of land subsidence in Pekalongan far exceeds the sea-level rise, resulting in a looming threat of land loss. The devastating impacts of land subsidence are the manifestation of its subsurface movement. Therefore, it is essential to understand the subsurface to elucidate the mechanism of land subsidence. Previous studies on land subsidence in Pekalongan are mainly related to subsidence rate monitoring and have not elaborated on the subsurface condition. This paper reviews the Pekalongan subsurface geology based on available literature to provide insight into the land subsidence problem. The results revealed that the land subsidence occurs in the recent alluvial plain of Pekalongan, consisting of a 30-70 m thick compressible deposit. Possible mechanisms of land subsidence arise from natural compaction, over-exploitation of confined groundwater, and increased built areas. As the seismicity of the study area is low, tectonic influence on land subsidence is considered negligible. It is expected that the offshore, nearshore, and swamp deposits are still naturally compacting. As the surface water supply is minimal, over-exploitation of groundwater resources from the deltaic and Damar Formation aquifers occurs. In the end, future research direction is proposed to reduce the impacts of the subsidence hazard.


1999 ◽  
Vol 24 ◽  
pp. 83-98 ◽  
Author(s):  
D. N. Logue ◽  
R. J. Berry ◽  
J. E. Offer ◽  
S. J. Chaplin ◽  
W. M. Crawshaw ◽  
...  

AbstractThe overall objective of a series of experiments to investigate ‘metabolic stress’ was to examine the relationships between ‘metabolic load’, disease and other parameters associated with the welfare of the dairy cow. In the main, these used several well controlled herd based studies complimented with more basic and strategic investigations. In this paper we compare and contrast practical aspects of health and welfare in two high genetic merit herds managed at the extremes of inputs and outputs for dairy farming in south-west Scotland. The hypothesis was that high output herds would have more health and welfare problems than low input herds. Two herds (70 Holstein-Friesian cows each) at SAC Acrehead Dumfries of a similar genetic background (overall in the top 5% of UK cows by PIN and ITEM), were housed in identical buildings and tended by the same herdsman. Both herds had autumn- and spring-calving cattle. The ‘low input’ herd (LI) was given a minimum of concentrate (approx. 0.5 t per cow per year) and milked twice a day and had a restricted quota of 385 000 l. The ‘high output’ herd (HO) was managed for high yields (unrestricted quota) and was given concentrates (2 t per cow per year) and forage ad libitum and milked three times daily. In 1995-96 the sole source of winter forage was grass/clover silage (LI) or grass silage (HO) but in 1996-1998 ensiled cereal and fodder beet were included in both diets. ‘Metabolic load’ could only be inferred from overall inputs, milk outputs, weight loss, body condition score and behaviour. There were significant differences in 305-day lactation yields between herds, and season of calving especially in 1995-96 (LI autumn; 5952 l at 30 g/kg protein (P); LI spring; 5741 l, 32.5 g/kg P; HO autumn; 9541 l at 32.8 g/kg P; HO spring; 8402 l, 32.6 g/kg P). LI weight and body condition-score losses were greatest in this year and behavioural studies showed substantial differences in feeding time (HO < LI, P < 0.05) and total lying time (LI < HO; P < 0.05). However these differences were much less marked in subsequent years. There was a significant difference in the prevalence and incidence of clinical lameness between herds (HO > LI; P < 0.05) and season (autumn > spring P < 0.05) but not for mastitis or metabolic disease. An in-depth study of subclinical claw horn lesion development in first calving heifers showed significant differences between herds in 1996-97 (LI > HO, P < 0.05) but none in 1995-96. There was a significant difference for season in both years (autumn > spring, P < 0.05). Analysis of blood biochemistry parameters of samples taken at approximately 1 month after calving showed some significant differences between LI and HO generally indicating a greater ‘metabolic load’ for LI. Although the full effects of ‘metabolic load’ on immune function and reproduction are dealt with elsewhere our preliminary data showed no significant differences between herds for the former but some significant differences for the latter, in particular there were differences in aspects of the progesterone profiles between herds and more importantly between seasons. However these latter differences were not clearly reflected in conception rates. It was concluded that the hypothesis was not fully sustained and that both systems had pitfalls in terms of welfare. The three major areas causing difficulties for both systems were the need first to ensure adequate intake of forage; secondly to limit the environmental challenge to the feet and udder and finally to marry these systems to the factors limiting reproduction, primarily calving season and ability of reproduction management.


2013 ◽  
Vol 726-731 ◽  
pp. 3294-3298
Author(s):  
Xiang Ran Li ◽  
You Qian Qiao ◽  
Yu Zhen Xing

The seawater intrusion, as special environment caused by unreasonable development utilization of water resources at coastal areas, widely exists at home and abroad. In recent years, the phenomenon of groundwater over-pumping in Yantai City is increasingly serious and seawater intrusion problems also occur constantly. Further investigation of seawater intrusion status in Yantai city, analysis of correlation of seawater intrusion and over exploitation of groundwater, combined with the actual situation of Yantai City, explore the mode of groundwater resources utilization in seawater intrusion area. For the effective prevention of seawater intrusion, it has important significance to do the efficient development and utilization of groundwater resources well.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1063
Author(s):  
Nuria Naranjo-Fernández ◽  
Carolina Guardiola-Albert ◽  
Héctor Aguilera ◽  
Carmen Serrano-Hidalgo ◽  
Esperanza Montero-González

Groundwater resources are regularly the principal water supply in semiarid and arid climate areas. However, groundwater levels (GWL) in semiarid aquifers are suffering a general decrease because of anthropic exploitation of aquifers and the repercussions of climate change. Effective groundwater management strategies require a deep characterization of GWL fluctuations, in order to identify individual behaviors and triggering factors. In September 2019, the Guadalquivir River Basin Authority (CHG) declared that there was over-exploitation in three of the five groundwater bodies of the Almonte-Marismas aquifer, Southwest Spain. For that reason, it is critical to understand GWL dynamics in this aquifer before the new Spanish Water Resources Management Plans (2021–2027) are developed. The application of GWL series clustering in hydrogeology has grown over the past few years, as it is an extraordinary tool that promptly provides a GWL classification; each group can be related to different responses of a complex aquifer under any external change. In this work, GWL time series from 160 piezometers were analyzed for the period 1975 to 2016 and, after data pre-processing, 24 piezometers were selected for clustering with k-means (static) and time series (dynamic) clustering techniques. Six and seven groups (k) were chosen to apply k-means. Six characterized types of hydrodynamic behaviors were obtained with time series clustering (TSC). Number of clusters were related to diverse affections of water exploitation depending on soil uses and hydrogeological spatial distribution parameters. TSC enabled us to distinguish local areas with high hydrodynamic disturbance and to highlight a quantitative drop of GWL during the studied period.


Sign in / Sign up

Export Citation Format

Share Document