scholarly journals A Review Paper on Concrete-Filled Aluminum Tubular Columns

2019 ◽  
Vol 27 (2) ◽  
pp. 265-274
Author(s):  
Ahmed Sagban Saadoon ◽  
Kadhim Zuboon Nasser

The aim of this review paper is to summarize available reports, papers, theses, dissertations and conference papers dealing with the performance of aluminum-concrete composite columns. Hollow aluminum sections filled with concrete have been used as composite columns due to their corrosion resistance, easy production, appearance and lightweight. Many researches were performed in the area of concrete-filled hollow sections (tubes). However, there are few researches have been performed on concrete-filled aluminum tubes. In this review, different available published papers are summarized to view the type of the studied aluminum-concrete columns and the main studied parameters that affecting the behavior of these composite columns. More than (190) specimens are collected and showed in this review.

2014 ◽  
Vol 984-985 ◽  
pp. 684-692 ◽  
Author(s):  
Natesan Balasubramani ◽  
R. Thenmozhi

In this paper, totally 7 innovative steel concrete composite columns were investigated for axial load and reported. 6 of them were modified DSHCFT columns consisting only outer skin tube and butting concrete and the remaining one was Double Skinned Hollow Concrete Filled steel Tubular columns having outer and inner steel tube (DSHCFT), which was annularly in-filled with Self-Compacting Concrete (SCC). The concrete grade and yield strength of steel tubes used were respectively M35 and 250MPa. The ratios of outer tube diameter to its thickness were 34 to 36. The length to outer diameter (aspect ratio) and the hollowness ratio were from 2.4 to 4.5 and from 0.35 to 0.5 respectively. Mechanical behaviour in term of stiffness, confinement, ultimate strength and ductility were discussed. Load Vs mid-span deflection diagrams, failure patterns of the specimens are presented. The existence of composite action between steel and concrete and confinement of concrete were experimentally evidenced. Suitability of two existing design codes is verified. For the design of the modified DSHCFT Stub columns with SCC and DSHCFTs, a possible simplified formula is suggested.Keywords: Failure mode, Stiffness, ductility, confinement, Ultimate load, Simplified formula.


The composite structural element under study is a carbon fiber wrapped, steel I section reinforced concrete column. The wrapped CFRP is under tension and reinforced concrete under radial compression. The aim of the research is to determine the behavior of the composite structural element under axial loads. The Stress-strain characteristics and load bearing capacity of control and CFRP wrapped tubular columns were determined experimentally. Further, Finite element analysis of steel, reinforced concrete and CFRP wrapped concrete columns sections, was conducted using ANSYS Workbench 15.0 software. The experimental and analytical results were compared.


2011 ◽  
Vol 99-100 ◽  
pp. 715-718 ◽  
Author(s):  
Jun Dong ◽  
De Ping Chen ◽  
Ju Mei Zhao ◽  
De Shan Shan ◽  
Xin Yue Liu ◽  
...  

Twelve PVC tubed short concrete columns and four columns without PVC tube confined were tested under axial load to investigate mechanical properties of axially loaded PVC tubed short concrete columns . The principal influencing factors such as concrete strength, loading condition and ratio of height to diameter were studied. Test results indicated that strength and deformation performance of core concrete increased as a result of the confinement of PVC tube. The PVC tube confinement effect on concrete will decrease with an increase in strength of concrete. Load- carrying capacity and deformation of short composite columns with different loading condition made some difference. As the ratio of height to diameter increases, load- carrying capacity and plasticity of short composite columns decreased gradually.


Author(s):  
Annayath Maqbool ◽  
Noor Zaman Khan ◽  
Arshad Noor Siddiquee

Abstract The use of lighter materials is one of the efficient means to mitigate the increasing demands on fuel resources, reduce CO2 emissions. Mg is one of the lightest material available and possesses exciting range of properties such as low density and high strength to weight ratio. Despite such exciting properties, the applications of Mg and its alloys were very limited in aerospace, automotive and biomedical industries but recently the application is picking-up. The restricted application is attributed to anisotropy, poor corrosive resistance and inflammability of Mg. The current review addresses the barriers limiting the widespread application of Mg based materials. Furthermore, the mitigation of the problems of anisotropy, poor corrosion resistance, ductility and inflammability of Mg are critically reviewed. The findings of this research provide insights of the processing techniques, properties and how to address the potential barriers of limited applications. The review paper will assist and motivate the researchers to ponder and overcome numerous problems related to Mg and its alloys by understanding the importance of each problem discussed in this review. An attempt has also been made to arrange research status on issues and the mitigation thereof with respect to Mg and its alloys as single reference point.


2020 ◽  
Vol 1529 ◽  
pp. 042104
Author(s):  
S N I Zulkifli ◽  
M H Mohd Hisbany ◽  
R Ismail ◽  
F A A Zakwan ◽  
A Hazrina ◽  
...  

2011 ◽  
Vol 71-78 ◽  
pp. 4203-4206
Author(s):  
Le Zhou ◽  
Hong Tao Liu

For the further study of bearing compressive capacity of GFRP tube filled with SHC(steel-reinforced high-strength concrete)columns subjected to eccentric compression, and analysis its whole bearing compressive process under eccentric compression. Based on the flat section assumption finite strip method, the calculating program of bearing eccentric compressive capacity of GFRP tube filled with SHC columns is proposed according to existing retrofit theory and related technical procedures. The relation curves of load-deformation is gotten using this calculating program, at the same time it can get the effect curves of concrete strength, slenderness ratio, eccentricity and containing bone rate to load-deformation. Calculations show that the ultimate bearing compressive capacity of composite column decreases with the increase of slenderness ratio, and elastic stage of component curve gradually shortens and stiffness gradually loses; The ultimate bearing compressive capacity of composite columns decreases with the increase of eccentricity; component ductility improves; the ultimate bearing compressive capacity of composite columns increases with the increase of concrete strength. The calculated results agree well with the experimental results and this study provides a basis for practical design.


2016 ◽  
Vol 691 ◽  
pp. 195-206
Author(s):  
Juraj Frólo ◽  
Štefan Gramblička

This paper presents some results of theoretical and experimental investigations of composite steel-concrete columns with solid steel profiles - steel cores. Due to absence of simplified design method according to EN 1994-1-1 [1], design of these columns in practice is limited in general. Reasons for this are residual stresses in steel profile caused by fabrication process and limitation of strains in concrete. Recommendations have been determined for simplified design method according to EN 1994-1-1 for composite columns made of high strength concrete filled steel tube with central steel core. Results of experimental research on composite columns with the cross-section made of steel core covered by reinforced concrete are presented.


2016 ◽  
Vol 691 ◽  
pp. 40-50
Author(s):  
Štefan Gramblička ◽  
Andrea Hrusovska

Composite steel and concrete columns have been used in the tall buildings due theirs high-resistance and the possibility to reduce cross sections when we compered composite columns with reinforced concrete columns. There are a lot of types of composite columns. We are concerned with columns, which are completely or partially concrete-encased steel members. In practice, a lot of composite columns are relatively slender and in design the second - order effects will usually need to be included. A partially concrete encased steel cross-section was selected for laboratory tests of composite columns. According to the results of the experiments (total of 18 columns were tested in two series), we analyzed the effects of the second - order theory. The experimental results were compared with theoretical results obtained from the model developed in the non-linear software. The evaluation of the results is also shown in comparison with the general design method according to Eurocode 4, Design of composite steel and concrete structures - Part 1.1 General rules and rules for buildings.


2014 ◽  
Vol 638-640 ◽  
pp. 127-131 ◽  
Author(s):  
Ping Guan ◽  
Lan Xiang Chen

In order to exert the force performance of steel tubular columns filled with steel-reinforced concrete, the focus of the paper is about the influence of load condition on flexural mechanical properties and the shear mechanical properties of the composite columns. The two types of loading conditions are: 1.Steel pipe, steel placed in the steel tube and concrete subject to compressive load simultaneously; 2.Compressive load acts on steel and concrete. The results show that the calculated results based on ADINA and the experimental ones are in agreement well. The calculated results also show that the load condition has no influence on flexural mechanical properties, but has a great influence on shear mechanical properties of the composite columns.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 125
Author(s):  
Junjie Zeng ◽  
Tianwei Long

In this study, a novel form of tubular columns that is made of ultra-high-performance concrete (UHPC) internally reinforced with fiber-reinforced polymer (FRP) grid (herein referred to as FRP grid-UHPCtubular column) was developed. The axial compression test results of FRP grid-UHPC tubular columns with and without in-filled concrete are presented and discussed. Effects of the number of the FRP grid-reinforcing cages, the presence of in-filled concrete, and the presence of external FRP confinement were investigated. The test results confirmed that the FRP-UHPC tubular columns have a satisfactory compressive strength, and the strength and ductility of FRP-confined concrete-filled FRP grid-UHPC tube columns are enhanced due to the confinement from the FRP wrap. The proposed FRP grid-reinforced UHPC composite tubes are attractive in structural applications as pipelines or permanent formworks for columns, as well as external jackets (can be prefabricated in the form of two halves of tubes) for strengthening deteriorated reinforced concrete columns.


Sign in / Sign up

Export Citation Format

Share Document