scholarly journals Forecasting Cases of Dengue Hemorrhagic Fever Using the Backpropagation, Gaussians and Support-Vector Machine Methods

2021 ◽  
Vol 5 (2) ◽  
pp. 335-341
Author(s):  
I Made Yudha Arya Dala ◽  
I Ketut Gede Darma Putra ◽  
Putu Wira Buana

Dengue disease has been known to the people of Indonesia since 1779. The Aedes mosquito has two types, namely Aedes aegypti and Aedes albopictus. Aedes aegypti is a mosquito that carries the dengue virus. The dengue fever cases in Bali province tend to increase from year to year, especially when approaching the rainy season. The government's preventive action is needed to tackle the spread of the dengue virus and casualties. Data mining attempts to extract known knowledge or use historical data to find regularity patterns and relationships in a set of data. In this study, data mining predicts the number of dengue cases in Bali's province. The prediction uses several database variables to predict future variables' values, which are not currently known. The process of estimating predictive values ​​based on patterns in a data set. This forecasting aims to assist the government in predicting dengue fever cases in the coming period to prepare appropriate prevention efforts. Forecasting dengue fever cases are carried out using three methods: backpropagation, gaussians, and support-vector machine. The amount of data used was 528 sample data, from 2008 to 2018. The results obtained are that the backpropagation method is better at predicting dengue fever cases with a MAPE error rate of 0.025. Simultaneously, the gaussian method has a MAPE error rate of 0.035, and support-vector machine has a MAPE error rate of 0.060.  

2021 ◽  
Vol 6 (2) ◽  
pp. 018-032
Author(s):  
Rasha Thamer Shawe ◽  
Kawther Thabt Saleh ◽  
Farah Neamah Abbas

These days, security threats detection, generally discussed to as intrusion, has befitted actual significant and serious problem in network, information and data security. Thus, an intrusion detection system (IDS) has befitted actual important element in computer or network security. Avoidance of such intrusions wholly bases on detection ability of Intrusion Detection System (IDS) which productions necessary job in network security such it identifies different kinds of attacks in network. Moreover, the data mining has been playing an important job in the different disciplines of technologies and sciences. For computer security, data mining are presented for serving intrusion detection System (IDS) to detect intruders accurately. One of the vital techniques of data mining is characteristic, so we suggest Intrusion Detection System utilizing data mining approach: SVM (Support Vector Machine). In suggest system, the classification will be through by employing SVM and realization concerning the suggested system efficiency will be accomplish by executing a number of experiments employing KDD Cup’99 dataset. SVM (Support Vector Machine) is one of the best distinguished classification techniques in the data mining region. KDD Cup’99 data set is utilized to execute several investigates in our suggested system. The experimental results illustration that we can decrease wide time is taken to construct SVM model by accomplishment suitable data set pre-processing. False Positive Rate (FPR) is decrease and Attack detection rate of SVM is increased .applied with classification algorithm gives the accuracy highest result. Implementation Environment Intrusion detection system is implemented using Mat lab 2015 programming language, and the examinations have been implemented in the environment of Windows-7 operating system mat lab R2015a, the processor: Core i7- Duo CPU 2670, 2.5 GHz, and (8GB) RAM.


2012 ◽  
Vol 60 (3) ◽  
pp. 461-470 ◽  
Author(s):  
A. Wiliński ◽  
S. Osowski

Abstract The paper presents the ensemble of data mining methods for discovering the most important genes and gene sequences generated by the gene expression arrays, responsible for the recognition of a particular type of cancer. The analyzed methods include the correlation of the feature with a class, application of the statistical hypotheses, the Fisher measure of discrimination and application of the linear Support Vector Machine for characterization of the discrimination ability of the features. In the first step of ranking we apply each method individually, choosing the genes most often selected in the cross validation of the available data set. In the next step we combine the results of different selection methods together and once again choose the genes most frequently appearing in the selected sets. On the basis of this we form the final ranking of the genes. The most important genes form the input information delivered to the Support Vector Machine (SVM) classifier, responsible for the final recognition of tumor from non-tumor data. Different forms of checking the correctness of the proposed ranking procedure have been applied. The first one is relied on mapping the distribution of selected genes on the two-coordinate system formed by two most important principal components of the PCA transformation and applying the cluster quality measures. The other one depicts the results in the graphical form by presenting the gene expressions in the form of pixel intensity for the available data. The final confirmation of the quality of the proposed ranking method are the classification results of recognition of the cancer cases from the non-cancer (normal) ones, performed using the Gaussian kernel SVM. The results of selection of the most significant genes used by the SVM for recognition of the prostate cancer cases from normal cases have confirmed a good accuracy of results. The presented methodology is of potential use for practical application in bioinformatics.


2019 ◽  
Vol 8 (2) ◽  
pp. 3861-3870

Autistic Spectrum Disorder (ASD) is a brain developmental disorder which weakens the ability to communicate and interact with others. A child with autism spectrum disorder may have different, repetitive patterns of behaviour, interests or activities, including some specific signs. To diagnose the behaviour of ASD and identify the level of disease on the human is still a challenging task for the doctors. Only by the trained and experienced physician can identify the ASD immediately. The data set for autism problem consist of number of causes and the results based on the symptoms for ASD. So, Data mining algorithm is in need to organize and pattern the ASD details. The machine algorithms are available to classify the data in data mining works. In this proposed work, a machine learning algorithm called Support Vector Machine is used to classify the ASD children accurately. SVM is one of the classification algorithms which finding the hyper plane that maximizes the margin between the two classes. Though SVM give better identification of disease, some children have their unique nature which hides their problem of ASD easily. So, to diagnose the problem accurately, the user defined SVM parameters are tuned by optimization algorithm called Differential Evolutionary Algorithm. DE is an optimization algorithm used to find the optimal solution of SVM parameters. Further, to improve the performance of the proposed method, the dimension reduction technique is followed to reduce the SVM and ANN network dimension. The Sequential Feature Selection (SFS) method is applied in this paper, which select the most influenced variables for the output. The reduced network is further classified by ANN and SVM model. The Data set for the ANN and SVM network has been taken from the real records of the multi-specialty hospitals. The SVM and DE optimized SVM results are compared with another classification model called Artificial Neural Networks. The test results show the betterment of DE optimized SVM which give the classification of ASD child very accurately compare with ANN and DE optimized ANN.


Author(s):  
Zahraa Faiz Hussain ◽  
Hind Raad Ibraheem ◽  
Mohammad Alsajri ◽  
Ahmed Hussein Ali ◽  
Mohd Arfian Ismail ◽  
...  

Data mining is known as the process of detection concerning patterns from essential amounts of data. As a process of knowledge discovery. Classification is a data analysis that extracts a model which describes an important data classes. One of the outstanding classifications methods in data mining is support vector machine classification (SVM). It is capable of envisaging results and mostly effective than other classification methods. The SVM is a one technique of machine learning techniques that is well known technique, learning with supervised and have been applied perfectly to a vary problems of: regression, classification, and clustering in diverse domains such as gene expression, web text mining. In this study, we proposed a newly mode for classifying iris data set using SVM classifier and genetic algorithm to optimize c and gamma parameters of linear SVM, in addition principle components analysis (PCA) algorithm was use for features reduction.


2019 ◽  
Vol 15 (2) ◽  
pp. 275-280
Author(s):  
Agus Setiyono ◽  
Hilman F Pardede

It is now common for a cellphone to receive spam messages. Great number of received messages making it difficult for human to classify those messages to Spam or no Spam.  One way to overcome this problem is to use Data Mining for automatic classifications. In this paper, we investigate various data mining techniques, named Support Vector Machine, Multinomial Naïve Bayes and Decision Tree for automatic spam detection. Our experimental results show that Support Vector Machine algorithm is the best algorithm over three evaluated algorithms. Support Vector Machine achieves 98.33%, while Multinomial Naïve Bayes achieves 98.13% and Decision Tree is at 97.10 % accuracy.


2020 ◽  
Vol 27 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Lei Xu ◽  
Guangmin Liang ◽  
Baowen Chen ◽  
Xu Tan ◽  
Huaikun Xiang ◽  
...  

Background: Cell lytic enzyme is a kind of highly evolved protein, which can destroy the cell structure and kill the bacteria. Compared with antibiotics, cell lytic enzyme will not cause serious problem of drug resistance of pathogenic bacteria. Thus, the study of cell wall lytic enzymes aims at finding an efficient way for curing bacteria infectious. Compared with using antibiotics, the problem of drug resistance becomes more serious. Therefore, it is a good choice for curing bacterial infections by using cell lytic enzymes. Cell lytic enzyme includes endolysin and autolysin and the difference between them is the purpose of the break of cell wall. The identification of the type of cell lytic enzymes is meaningful for the study of cell wall enzymes. Objective: In this article, our motivation is to predict the type of cell lytic enzyme. Cell lytic enzyme is helpful for killing bacteria, so it is meaningful for study the type of cell lytic enzyme. However, it is time consuming to detect the type of cell lytic enzyme by experimental methods. Thus, an efficient computational method for the type of cell lytic enzyme prediction is proposed in our work. Method: We propose a computational method for the prediction of endolysin and autolysin. First, a data set containing 27 endolysins and 41 autolysins is built. Then the protein is represented by tripeptides composition. The features are selected with larger confidence degree. At last, the classifier is trained by the labeled vectors based on support vector machine. The learned classifier is used to predict the type of cell lytic enzyme. Results: Following the proposed method, the experimental results show that the overall accuracy can attain 97.06%, when 44 features are selected. Compared with Ding's method, our method improves the overall accuracy by nearly 4.5% ((97.06-92.9)/92.9%). The performance of our proposed method is stable, when the selected feature number is from 40 to 70. The overall accuracy of tripeptides optimal feature set is 94.12%, and the overall accuracy of Chou's amphiphilic PseAAC method is 76.2%. The experimental results also demonstrate that the overall accuracy is improved by nearly 18% when using the tripeptides optimal feature set. Conclusion: The paper proposed an efficient method for identifying endolysin and autolysin. In this paper, support vector machine is used to predict the type of cell lytic enzyme. The experimental results show that the overall accuracy of the proposed method is 94.12%, which is better than some existing methods. In conclusion, the selected 44 features can improve the overall accuracy for identification of the type of cell lytic enzyme. Support vector machine performs better than other classifiers when using the selected feature set on the benchmark data set.


2021 ◽  
Vol 15 (6) ◽  
pp. 1812-1819
Author(s):  
Azita Yazdani ◽  
Ramin Ravangard ◽  
Roxana Sharifian

The new coronavirus has been spreading since the beginning of 2020 and many efforts have been made to develop vaccines to help patients recover. It is now clear that the world needs a rapid solution to curb the spread of COVID-19 worldwide with non-clinical approaches such as data mining, enhanced intelligence, and other artificial intelligence techniques. These approaches can be effective in reducing the burden on the health care system to provide the best possible way to diagnose and predict the COVID-19 epidemic. In this study, data mining models for early detection of Covid-19 in patients were developed using the epidemiological dataset of patients and individuals suspected of having Covid-19 in Iran. C4.5, support vector machine, Naive Bayes, logistic regression, Random Forest, and k-nearest neighbor algorithm were used directly on the dataset using Rapid miner to develop the models. By receiving clinical signs, this model diagnosis the risk of contracting the COVID-19 virus. Examination of the models in this study has shown that the support vector machine with 93.41% accuracy is more efficient in the diagnosis of patients with COVID-19 pandemic, which is the best model among other developed models. Keywords: COVID-19, Data mining, Machine Learning, Artificial Intelligence, Classification


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Johannes Masino ◽  
Jakob Thumm ◽  
Guillaume Levasseur ◽  
Michael Frey ◽  
Frank Gauterin ◽  
...  

This work aims at classifying the road condition with data mining methods using simple acceleration sensors and gyroscopes installed in vehicles. Two classifiers are developed with a support vector machine (SVM) to distinguish between different types of road surfaces, such as asphalt and concrete, and obstacles, such as potholes or railway crossings. From the sensor signals, frequency-based features are extracted, evaluated automatically with MANOVA. The selected features and their meaning to predict the classes are discussed. The best features are used for designing the classifiers. Finally, the methods, which are developed and applied in this work, are implemented in a Matlab toolbox with a graphical user interface. The toolbox visualizes the classification results on maps, thus enabling manual verification of the results. The accuracy of the cross-validation of classifying obstacles yields 81.0% on average and of classifying road material 96.1% on average. The results are discussed on a comprehensive exemplary data set.


Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 481-492 ◽  
Author(s):  
Faisal Khan ◽  
Frieder Enzmann ◽  
Michael Kersten

Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squares support vector machine (LS-SVM, an algorithm for pixel-based multi-phase classification) approach. A receiver operating characteristic (ROC) analysis was performed on BH-corrected and uncorrected samples to show that BH correction is in fact an important prerequisite for accurate multi-phase classification. The combination of the two approaches was thus used to classify successfully three different more or less complex multi-phase rock core samples.


2013 ◽  
Vol 295-298 ◽  
pp. 644-647 ◽  
Author(s):  
Yu Kai Yao ◽  
Hong Mei Cui ◽  
Ming Wei Len ◽  
Xiao Yun Chen

SVM (Support Vector Machine) is a powerful data mining algorithm, and is mainly used to finish classification or regression tasks. In this literature, SVM is used to conduct disease prediction. We focus on integrating with stratified sample and grid search technology to improve the classification accuracy of SVM, thus, we propose an improved algorithm named SGSVM: Stratified sample and Grid search based SVM. To testify the performance of SGSVM, heart-disease data from UCI are used in our experiment, and the results show SGSVM has obvious improvement in classification accuracy, and this is very valuable especially in disease prediction.


Sign in / Sign up

Export Citation Format

Share Document