scholarly journals Edukasi Jelantah sebagai Sumber Energi pada Kelompok Ibu Rumah Tangga di Desa Petir, Bogor

2021 ◽  
Vol 7 (3) ◽  
pp. 193-200
Author(s):  
Dyah Wulandani ◽  
Leopold Oscar Nelwan ◽  
Dwi Setyaningsih

Jelantah is the used cooking oil. After being used more than three times for frying, the oil will be oxidized by ambient air, and dangerous free radical compounds are formed. Consuming of jelantah in certain amounts, can trigger diseases such as blockage of blood vessels, cancer and nervous disorders. In addition, jelantah discharged into the drains will cause blockage of drains and kill water ecosystems. However, jelantah can be used as an energy source and other products that have economic value. The purpose of this activity is to provide education for groups of housewives in Babakan Gang Salak, Petir Village, Bogor Regency regarding the dangers and benefits of jelantah, introducing simple technology of biodiesel production. The methods used include questionnaires, training and monitoring. The 1st, 2nd and 3rd trainings were held with different participants in the same location. The the participants’ enthusiasm and local site leaders was very high and they wished training for a wider range of participants. The training has been conducted successfully, which was showed that most of the participants could increase their skills and knowledge about the dangers and benefits of jelantah is biodiesel production. This knowledge is supposed to be applied in everyday life by not consuming jelantah for frying food, but it is used as a raw material for biodiesel production.

2016 ◽  
Vol 1 ◽  
pp. 26
Author(s):  
Sigit Ari Prabowo ◽  
Muh. Waskito Ardhi ◽  
Mislan Sasono

<p>Jelantah oil is used cooking oil waste, this is organic but if mishandled will pollute the environment. Cooking oil is used for frying foods optimum for 4 times the pan. Cooking oil after use more than 4 times the Pan contains a very high cholesterol levels so that harm to human health that consume them. The purpose this implementation to provide training on the utilization of jelantah from Pan crackers at factory crackers Mojopurno for make an organic soap alternatives. Outreach activities are divided into three phases : 1) observation phase, carried out to determine the potential spread of the villagers and the mojopurno primarily citizens around factories manufacturing crackers; 2) stage of training, was implemented to provide skills training through the creation of soap from the raw material of oil jelantah; 3) Stage evaluation, conducted an evaluation the activities of the citizens who have obtained training in the utilization of waste oil jelantah for making soap.</p>


2019 ◽  
Vol 1 (1) ◽  
pp. 27-33
Author(s):  
D.U.M. Susilo ◽  
Th. Candra Wasis A.S. ◽  
Zakwan .

The using of biodiesel as an environmentally friendly fuel has received attention from consumers to producers. So, a lot of research was done on the potential raw material to become biodiesel. One of the raw materials for biodiesel was waste cooking oil. Pontianak City have many sources including waste cooking oil from restaurants. Therefore restaurants in the city of Pontianak might be used as suppliers of waste cooking oil in biodiesel production. This study aims to determine the priority of criteria and sub-criteria for restaurants as suppliers and determine good restaurants as suppliers of used cooking in Pontianak City . Purposive technique sampling using a sample of 61 house dining, interviewed to obtain alternative data suppliers. Expert survey questionnaire contains priority weighting of criteria and supplier criteria, analyzed using AHP ( Analytic Hierarchy Process ). Grouping of restaurants based on alternative supplier values ​​is used to determine good restaurants to be suppliers. The priority criteria for restaurants as consecutive suppliers are experience (0.289), quality (0.279), capacity (0.231), service (0.148) and price (0.053). Sub-criteria priority of restaurants as suppliers in a row is the time span of used cooking oil sold(0.161), length of time used cooking oil (0.155), income (0.129), type of cooking oil (0.107), type of fried food products (0.092), volume of cooking oil (0.090), frying volume (0.085), transaction convenience (0.082), subject to used cooking oil (0.056), used cooking oil price (0.030) and ease of payment (0.013). A value of ≥ 0.325 is a dining value that shows a very better priority as a supplier. The number of restaurants as suppliers is 8 % of the population of restaurants in the city of Pontianak..


2020 ◽  
Vol 991 ◽  
pp. 144-149
Author(s):  
Arif Hidayat ◽  
Galih Kholifatu Roziq ◽  
Faiz Muhammad ◽  
Winarto Kurniawan ◽  
Hirofumi Hinode

The problem associated with biodiesel production is economic feasibility. The biodiesel cost will reduce when the low cost feedstock was used as feedstock. Used Cooking Oil (UCO) is a promising candidate as raw material for biodiesel synthesis. In this study, the investigation of biodiesel synthesis from UCO was studied using red mud as heterogeneous catalysts. The catalyst was prepared by impregnating Potassium metals on red mud. The catalyst physico-characteristics were determined using Nitrogen gas adsorption, FT-IR, XRD, and XRF. The catalyst was tested to synthesize biodiesel from UCO. The reaction temperatures, methanol to oil mass ratio, and amount of catalyst were varied to examine their effects on biodiesel synthesis. The optimum reaction conditions were obtained at 60°C of reaction temperature, 10:1 of methanol to oil mass ratio, and 10% of catalyst amount. The highest biodiesel yield of 94.4% was obtained.


Author(s):  
Juan Camilo Acevedo-Páez ◽  
Néstor Andres Urbina-Suárez ◽  
Astrid Zuleima Acevedo-Rodríguez ◽  
Luis Carlos Becerra-Orozco

The biodiesel production was analyzed by chemical and enzymatic processes, from used cooking oil (UCO), evaluating the quality and yield of the product obtained in each method. For the chemical process, an acid esterification followed by a basic transesterification was developed, (reaction temperature: 60 °C, oil:methanol 1:6 molar ratio, concentration of KOH catalyst: 1% w/w reaction times: 55 and 70 min); and enzymatic transesterification (temperature: 38 °C, oil:methanol 1:3 molar ratio, enzyme concentration lipase XX 25 split liquid: 5%, reaction times: 3 and 6 hours). Physicochemical properties (i.e. density, kinematic viscosity, moisture content, fatty acid profile, percentage of acidity, peroxides index and saponification) of the raw material were determined. Results showed the presence of oleic acid (42.45%) and palmitic acid (33.52%). The highest yield obtained was from the chemical transesterification under the conditions of 60 °C, 1% KOH and 70 min with a conversion percentage of 96.15% and an acid number of 1.33 mmKOH/g, compared to the enzymatic transesterification which registered a high acid number of 6.91 mmKOH/g and conversion percentage of 48.81% under the conditions of 38 °C, 5% of enzyme lipase and 3 hours.


2021 ◽  
Vol 170 ◽  
pp. 302-314
Author(s):  
Adeyinka S. Yusuff ◽  
Aman K. Bhonsle ◽  
Jayati Trivedi ◽  
Dinesh P. Bangwal ◽  
Lok P. Singh ◽  
...  

Perspektif ◽  
2016 ◽  
Vol 14 (2) ◽  
pp. 87 ◽  
Author(s):  
DIBYO PRANOWO ◽  
MAMAN HERMAN ◽  
. SYAFARUDDIN

<p>ABSTRAK<br /><br />Kemiri sunan (Reutealis trisperma (Blanco) Airy Shaw) merupakan salah satu jenis tanaman penghasil minyak nabati yang memiliki potensi besar sebagai sumber bahan baku untuk biodiesel. Tingkat produktivitas yang dapat mencapai 8-9 ton minyak kasar atau setara dengan 6-8 ton biodiesel/ha/tahun memiliki nilai strategis terkait dengan program pemerintah dalam mencari alternatif sumber energi baru yang terbarukan. Pengembangan sumber energi terbarukan seperti yang berasal dari minyak nabati kemiri sunan merupakan salah satu alternatif dalam upaya memenuhi defisit energi untuk keperluan domestik sehingga Indonesia dapat keluar dari himpitan krisis energi. Lahan-lahan yang telah terdegradasi di Indonesia dari tahun ke tahun luasnya semakin bertambah baik karena faktor alam maupun karena eksploitasi yang tidak terkendali. Disisi lain pengembangan tanaman sumber BBN terkendala karena keterbatasan lahan. Kajian yang telah dilakukan secara intensif terhadap karakteristik tanaman, minyak dan biodiesel yang dihasilkannya, serta daya adaptasinya yang sangat luas terhadap beragam agroekosistem yang ada di Indonesia, tanaman kemiri sunan memberikan harapan yang baik disamping sebagai sumber bahan baku biodiesel, juga dapat berfungsi sebagai tanaman konservasi untuk mereklamasi lahan-lahan marginal yang telah terdegradasi. Disamping itu, pengembangan tanaman kemiri sunan di lahan yang telah terdegradasi tidak hanya akan dapat meningkatkan nilai ekonomi lahan tersebut, tetapi juga dapat dijadikan tanaman yang bernilai ekonomi tinggi, serta mampu menyediakan kebutuhan energi bagi masyarakat sekitar maupun ke wilayah yang lebih luas. <br />Kata kunci: Kemiri sunan, biodiesel, energi baru terbarukan, lahan terdegradasi, lahan bekas tambang.<br /><br />ABSTRACT</p><p>The Multiple Benefits of Developing Kemiri Sunan (Reutealis trisperma (Blanco) Airy Shaw) In Degraded Land<br /><br />Kemiri sunan (Reutealis trisperma (Blanco) Airy Shaw) is one kind of vegetable oil crops that have great potential as a source of raw material for biodiesel. The productivity level that can reach 8-9 tons of crude oil, equivalent to 6-8 tons of biodiesel/ha/year make as a strategic commodity associated with government programs to find alternative sources of renewable energy. Development of renewable energy such as from vegetable oils of kemiri sunan is one of the alternatives in an effort to solve the deficit of energy for domestic use so that Indonesia can way out of the crush of the energy crisis. Lands that have been degraded in Indonesia continuously increasing both cause of the extent of natural factors and uncontrolled exploitation. On the other hand the development of this plants retricted by aviability of land. The research88 Volume 14 Nomor 2, Des 2015 : 87 - 101 studies have been conducted on the characteristics of plants, oil and biodiesel production, and adaptability in very broadly of Indonesian agro-ecosystem, this plant show well hopes besides as a source of raw material for biodiesel, it can also function as a conservation plant to reclaim marginal lands that have been degraded. In addition, the development of kemiri sunan on degraded land will not only be able to increase the economic value of the land, but also can be used as crops of high economic value, and able to provide for the energy needs of the surrounding communities and to the wider region.<br />Keywords: Reutealis trisperma (Blanco) Airy Shaw, biodiesel, renewable energy, degraded land, post mained land.</p>


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 690 ◽  
Author(s):  
Edgar M. Sánchez Faba ◽  
Gabriel O. Ferrero ◽  
Joana M. Dias ◽  
Griselda A. Eimer

Recent research focuses on new biodiesel production and purification technologies that seek a carbon-neutral footprint, as well as cheap, renewable and abundant raw materials that do not compete with the demand for food. Then, many attractive alternatives arise due to their availability or low-cost, such as used cooking oil, Jatropha oil (non-edible) or byproducts of vegetable oil refineries. Due to their composition and the presence of moisture, these oils may need a pretreatment to reach the established conditions to be used in the biodiesel production process so that the final product complies with the international quality standards. In this work, a solid catalyst based on 10 wt % sodium oxide supported on mesoporous silica SBA-15, was employed in the transesterification of different feedstocks (commercial sunflower and soybean oil, used cooking oil, acid oil from soapstock and Jatropha hieronymi oil) with absolute methanol in the following reaction conditions—2–8 wt % catalyst, 14:1 methanol to oil molar ratio, 60 °C, vigorous magnetic stirring and 5 h of reaction. In this way, first- and second-generation biodiesel was obtained through heterogeneous catalysis with methyl ester yields between 52 and 97 wt %, depending on the free fatty acid content and the moisture content of the oils.


Sign in / Sign up

Export Citation Format

Share Document