scholarly journals THE DAILY RAINFALL STATISTICAL SHIFT DURING THE HALF CENTURY OVER THE BRANTAS CATCHMENT, EAST JAVA(STATISTIK PERUBAHAN CURAH HUJAN HARIAN SELAMA SETENGAH ABAD DI DAERAH TANGKAPAN BRANTAS, JAWA TIMUR)

Agromet ◽  
2007 ◽  
Vol 21 (1) ◽  
pp. 1
Author(s):  
E. Aldrian ◽  
F Ismaini ◽  
Yonny Koesmaryono

<p>A study of long term shift of the daily rainfall over the Brantas catchment East Java was done. Such a study is relatively new for the country due to lack of good quality data and sparsely distributed data all over the region. With a good quality long-term daily rainfall data over the Brantas catchment, we could detect a statistical shift of amount of rainy days, shift between periods and frequency trend changes from weekly, monthly, three-monthly and annually. The study utilized several methods including the probability density function distribution shift, Mann Kendall non parametric trend test and the wavelet analyses. The shift of low amount rainfall occurs from the dry to the wet season. We found distinct influences of orography and ENSO years in our trend tests. Additionally, the result of the Mann Kendall test show that the trend of rainy days increase during the wet season and the second transition period, while decrease during the dry season and first transitional period. Meanwhile the El Nino and La Nina have significant influence toward the dry season and the second transitional period.</p>

Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 319
Author(s):  
Cristian Pérez-Granados ◽  
Karl-L. Schuchmann

Climatic conditions represent one of the main constraints that influence avian calling behavior. Here, we monitored the daily calling activity of the Undulated Tinamou (Crypturellus undulatus) and the Chaco Chachalaca (Ortalis canicollis) during the dry and wet seasons in the Brazilian Pantanal. We aimed to assess the effects of climate predictors on the vocal activity of these focal species and evaluate whether these effects may vary among seasons. Air temperature was positively associated with the daily calling activity of both species during the dry season. However, the vocal activity of both species was unrelated to air temperature during the wet season, when higher temperatures occur. Daily rainfall was positively related to the daily calling activity of both species during the dry season, when rainfall events are scarce and seem to act as a trigger for breeding phenology of the focal species. Nonetheless, air temperature was negatively associated with the daily calling activity of the Undulated Tinamou during the wet season, when rainfall was abundant. This study improves our understanding of the vocal behavior of tropical birds and their relationships with climate, but further research is needed to elucidate the mechanisms behind the associations found in our study.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Velautham Daksiya ◽  
Pradeep Mandapaka ◽  
Edmond Y. M. Lo

The impact of changing climate on the frequency of daily rainfall extremes in Jakarta, Indonesia, is analysed and quantified. The study used three different models to assess the changes in rainfall characteristics. The first method involves the use of the weather generator LARS-WG to quantify changes between historical and future daily rainfall maxima. The second approach consists of statistically downscaling general circulation model (GCM) output based on historical empirical relationships between GCM output and station rainfall. Lastly, the study employed recent statistically downscaled global gridded rainfall projections to characterize climate change impact rainfall structure. Both annual and seasonal rainfall extremes are studied. The results show significant changes in annual maximum daily rainfall, with an average increase as high as 20% in the 100-year return period daily rainfall. The uncertainty arising from the use of different GCMs was found to be much larger than the uncertainty from the emission scenarios. Furthermore, the annual and wet seasonal analyses exhibit similar behaviors with increased future rainfall, but the dry season is not consistent across the models. The GCM uncertainty is larger in the dry season compared to annual and wet season.


2018 ◽  
pp. 77-90
Author(s):  
Alamgir Khalil ◽  
Areeya Rittima ◽  
Yutthana Phankamolsil

This study examined seasonal and annual trends of rainfall and streamflow data in the Mae Klong Basin, Thailand. Monthly data of eight key rainfall stations and ten streamflow stations were analyzed to detect trends using the non-parametric Mann-Kendall test, whilst the magni-tude of the trends was determined by Sen’s slope method for the period 2000-2015. For 75% ofthe analyzed stations,rainfall was found to increase in the wet season and decrease in the dry season. Station 130013 situated in the lower region showed a statistically significant increasing trend with a trend slope of 16.02 mma-1in the wet season, while station 130042-also located in the lower region of the basin-showed a statistically significant decreasing trend, with a trend slope of23.60 mma-1in the dry season. On an annual basis, 63%of the analyzed stations showed increasing rainfall trends, particularly in the central and lower regions of the Mae Klong Basin; however, rainfall trends in the upper region were found to be decreasing, which reflected water contributions to two main reservoirs in the upper part. The trends of naturalized inflow of Srinagarind and Vajiralongkorn Reservoirs were found to be decreasing on both seasonal and annual bases, while two naturalized streamflow stations located in Lam Taphoen and Lampachi sub-basins in the central and lower regions, respectively, showed increasing trends in both dry and wet seasons. The trends of regulated streamflow stations downstream of 4 main dams which were a result of reservoir operation were found to mostly decrease on an annual scale. Results of this study can help water resources managers enhance accuracy of assessment and effective planning of water resources management in the basin.


2019 ◽  
Author(s):  
Joseph O. Ogutu ◽  
Patricia D Moehlman ◽  
Hans-Peter Piepho ◽  
Victor A Runyoro ◽  
Michael B Coughenour ◽  
...  

The Ngorongoro Crater is an intact caldera with an area of approximately 310 km2. Long term records on herbivore populations, vegetation and rainfall made it possible to analyze historic and project future herbivore population dynamics. In 1974 there was a perturbation in that resident Maasai and their livestock were removed from the Crater. Vegetation structure changed in 1967 from predominately short grassland to mid and tall grasses dominating in 1995. Even with a change in grassland structure, total herbivore biomass remained relatively stable from 1963 to 2012, implying that the crater has a stable multi-herbivore community. However, in 1974, Maasai pastoralists were removed from the Ngorongoro Crater and there were significant changes in population trends for some herbivore species. Buffalo, elephant and ostrich numbers increased significantly during 1974-2012. The zebra population was stable from 1963 to 2012 whereas numbers of other eight species declined substantially between 1974 and 2012 relative to their peak numbers during 1974-1976. Numbers of Grant’s and Thomson’s gazelles, eland, kongoni, waterbuck (wet season only) declined significantly in the Crater in both seasons after 1974. Wildebeest numbers decreased in the Crater between 1974 and 2012 but this decrease was not statistically significant. In addition, some herbivore species were consistently more abundant inside the Crater during the wet than the dry season. This pattern was most evident for the large herbivore species requiring bulk forage, comprising buffalo, eland, and elephant. Analyses of rainfall indicated that there was a persistent annual cycle of 4.83 years. Herbivore population size was correlated with rainfall in both the wet and dry seasons. The relationships established between the time series of historic animal counts in the wet and dry seasons and lagged wet and dry season rainfall series were used to forecast the likely future trajectories of the wet and dry season population size for each species under three alternative climate change scenarios.


MAUSAM ◽  
2021 ◽  
Vol 72 (3) ◽  
pp. 571-582
Author(s):  
NAVNEET KAUR ◽  
ABRAR YOUSUF ◽  
M. J. SINGH

The trend analysis of historical rainfall data on monthly, annual and seasonal basis for three locations in lower Shivaliks of Punjab, viz., Patiala-ki-Rao (1982-2015), Ballowal Saunkhri (1987-2015) and Saleran (1984-2017) has been done in the present study using linear regression model, Mann Kendall test and Sen’s slope. Further, the data for annual and seasonal rainfall and rainy days has also been analyzed on quindecennial basis, i.e., for the period of 1986-2000 and 2001-2015. The analysis of data showed that annual rainfall in the region ranged from 1000 to 1150 mm. The trend analysis of the data shows that the monthly rainfall is decreasing at Patiala-ki-Rao and Saleran, however, the trend was significant for May at Patiala-ki-Rao; and in March and November at Saleran. At Ballowal Saunkhri, the decreasing trend is observed from May to October, however, the trend is significant only in August. The decrease in annual and monsoon rainfall is about 13 to 17 mm and 12 to 13 mm per year respectively at three locations in lower Shivaliks of Punjab. The highest annual (1600-2000 mm) and monsoon (1500-1800 mm) rainfall during the entire study period was recorded in the year 1988 at three locations. The decadal analysis of the data shows below normal rainfall during April to October. The analysis of the rainfall and rainy days on monthly, annual and seasonal averages of 15 year basis showed that both rainfall and rainy days have decreased during the 2001-2015 as compared to 1986-2000 during all the seasons of the year.


Hydrology ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 22 ◽  
Author(s):  
Rawshan Ali ◽  
Arez Ismael ◽  
Arien Heryansyah ◽  
Nadeem Nawaz

The assessment of trends in river flows has become of interest to the scientific community in order to understand the changing characteristics of flow due to climate change. In this study, the trends in river flow of Dukan Dam located in the northern part of Iraq were assessed. The assessment was carried out for the period 1964 to 2013 using Sen’s slope and the Mann–Kendall test. Sen’s slope was used to assess the magnitude of change while the Mann–Kendall trend test was used to confirm the significance of trends. The results of the study showed that there was a decreasing trend in river flow both annually and for all individual months. The highest decreasing trend of −5.08846 m3/month was noticed in April, while the lowest change of −1.06022 m3/month was noticed in November. The annual flow also showed a significant decrease at a rate of −1.912 m3/year at a 95% level of confidence. Additionally, the findings of the study also confirmed that a decrease in precipitation and the construction of hydraulic structures reduced the flow in the river. The findings of the study suggest that decreasing trends may cause a water-scarce situation in the future if proper adaptation measures are not taken.


2004 ◽  
Vol 44 (8) ◽  
pp. 755
Author(s):  
G. Bortolussi ◽  
A. R. Bird ◽  
C. L. Playford ◽  
J. Moore

Ninety young Merino ewes, depastured on Mitchell (Astrebla spp.) grass pastures in North West Queensland, were used in a hormonal growth promotant implantation study. The ewes were given 1 implant of Compudose, Ralgro, Revalor or Synovex-H, either at lamb marking (mid-dry season) or the start of the following summer wet season, which was ~180 days post-marking. The hormonal growth promotant implanted groups had greater (P<0.05) liveweights than the control group early in the trial (days 22 and 57) and also from the end of the period of activity of the wet season implant (day 277) until the middle of the dry season (day 412). Dry season (at lamb marking) implantation did not improve average daily gain. From the end of the wet season onwards, ewes with a wet season implant were heavier (P<0.05) than those ewes implanted at lamb marking. This liveweight advantage had diminished by the start of the autumn mating. Hormonal growth promotant implantation had a favourable (P<0.05) effect on growth rate, but adversely affected reproduction in the ewes, regardless of time of implantation. Implantation with Compudose or Synovex-H significantly (P<0.001) reduced the demonstration of oestrus, while Revalor or Synovex-H reduced pregnancy rates by up to 100%. Despite Ralgro reducing these variables by up to 25%, its effect was not significant. All ewes that were diagnosed as pregnant at 140 days later produced lambs. It was concluded from this study that hormonal growth promotant implantation at lamb marking provides no later-life advantage, while wet season implantation provides a growth or liveweight advantage to young Merino ewes and this persists for a long period after implantation. Despite the lack of an effect of Ralgro on oestrus and pregnancy results, however, implantation of young breeding ewes of any age should not be carried out, due to the long term and negative effects on reproductive performance. Wet season implantation may be best used for animals intended for slaughter.


2013 ◽  
Vol 10 (9) ◽  
pp. 11795-11828 ◽  
Author(s):  
L. Yang ◽  
F. Tian ◽  
Y. Sun ◽  
X. Yuan ◽  
H. Hu

Abstract. Hindcasts based on the Extended Streamflow Prediction (ESP) approach are carried out in a typical rainfall-dominated basin in China, aiming to examine the roles of initial condition (IC), future atmospheric forcing (FC) and hydrologic model uncertainty (MU) in the streamflow forecast skill. The combined effects of IC and FC are explored within the framework of a forecast window. By implementing virtual numerical simulations without the consideration of MU, it is found that the dominance of IC could last up to 90 days in dry season, while its impact gives way to FC for lead times exceeding 30 days in the wet season. The combined effects of IC and FC on the forecast skill are further investigated by proposing a dimensionless parameter (β) that represents the ratio of the total amount of initial water storage and the incoming rainfall. The forecast skill increases exponentially with β, and varies greatly in different forecast windows. Moreover, the influence of MU on forecast skill is examined by focusing on the uncertainty of model parameters. Two different hydrologic model calibration strategies are carried out. The results indicate that the uncertainty of model parameters exhibits a more significant influence on the forecast skill in the dry season than in the wet season. The ESP approach is more skillful in monthly streamflow forecast during the transition period from wet to dry than otherwise. For the transition period from dry to wet, the low skill of the forecasts could be attributed to the combined effects of IC and FC, but less to the biases in the hydrologic model parameters. For the forecasting in dry season, the usefulness of the ESP approach is heavily dependent on the strategy of the model calibration.


2021 ◽  
Vol 26 (1) ◽  
pp. 89-98
Author(s):  
Suresh Marahatta ◽  
Laxmi Prasad Devkota ◽  
Deepak Aryal

Daily flow data from 1964 to 2015 of Budhigandaki River at Arughat were analyzed to assess the impact of flow variation at different time scales to the run of the river (RoR) type of hydropower projects. The data show very high inter-annual variation in daily, monthly and seasonal flows. The long term annual average flow at Arughat was 160 m3/s and varies from 120 to 210 m3/s. The long-term averages of loss in flow for both dry and wet seasons based on daily flows for three design discharges (Q90, Q60 and Q40) were found to be respectively -0.72, -1.76 and -1.54 m3/s for dry season and 0.0, -0.27 and -2.26 m3/s for wet season.  Although long-term average loss is small, uncertainty increases with the increase in design discharge. The long-term dry season power loss is about 3 % for the RoR projects of the basin however, its annual variation is large. There is a probability of losing the quantum of energy generation by nearly 40% in some years and gaining by about 30 % in some other years in dry season. The impact of flow variation on power production was negative in both dry and wet seasons for RoR projects of Budhigandaki basin. This study concludes that uncertainty arising from daily flow variation should be assessed while estimating energy generation in hydropower projects. Intra-annual flow variation is, thus, to be taken into consideration while calculating the power generated by the RoR plants; and it should be reflected in power purchase agreement.


2016 ◽  
Vol 16 (15) ◽  
pp. 9727-9743 ◽  
Author(s):  
James D. Whitehead ◽  
Eoghan Darbyshire ◽  
Joel Brito ◽  
Henrique M. J. Barbosa ◽  
Ian Crawford ◽  
...  

Abstract. The Amazon basin is a vast continental area in which atmospheric composition is relatively unaffected by anthropogenic aerosol particles. Understanding the properties of the natural biogenic aerosol particles over the Amazon rainforest is key to understanding their influence on regional and global climate. While there have been a number of studies during the wet season, and of biomass burning particles in the dry season, there has been relatively little work on the transition period – the start of the dry season in the absence of biomass burning. As part of the Brazil–UK Network for Investigation of Amazonian Atmospheric Composition and Impacts on Climate (BUNIAACIC) project, aerosol measurements, focussing on unpolluted biogenic air masses, were conducted at a remote rainforest site in the central Amazon during the transition from wet to dry season in July 2013. This period marks the start of the dry season but before significant biomass burning occurs in the region. Median particle number concentrations were 266 cm−3, with size distributions dominated by an accumulation mode of 130–150 nm. During periods of low particle counts, a smaller Aitken mode could also be seen around 80 nm. While the concentrations were similar in magnitude to those seen during the wet season, the size distributions suggest an enhancement in the accumulation mode compared to the wet season, but not yet to the extent seen later in the dry season, when significant biomass burning takes place. Submicron nonrefractory aerosol composition, as measured by an aerosol chemical speciation monitor (ACSM), was dominated by organic material (around 81 %). Aerosol hygroscopicity was probed using measurements from a hygroscopicity tandem differential mobility analyser (HTDMA), and a quasi-monodisperse cloud condensation nuclei counter (CCNc). The hygroscopicity parameter, κ, was found to be low, ranging from 0.12 for Aitken-mode particles to 0.18 for accumulation-mode particles. This was consistent with previous studies in the region, but lower than similar measurements conducted in Borneo, where κ ranged 0.17–0.37. A wide issue bioaerosol sensor (WIBS-3M) was deployed at ground level to probe the coarse mode, detecting primary biological aerosol by fluorescence (fluorescent biological aerosol particles, or FBAPs). The mean FBAP number concentration was 400 ± 242 L−1; however, this ranged from around 200 L−1 during the day to as much as 1200 L−1 at night. FBAPs dominated the coarse-mode particles, comprising between 55 and 75 % of particles during the day to more than 90 % at night. Non-FBAPs did not show a strong diurnal pattern. Comparison with previous FBAP measurements above canopy at the same location suggests there is a strong vertical gradient in FBAP concentrations through the canopy. Cluster analysis of the data suggests that FBAPs were dominated (around 70 %) by fungal spores. Further, long-term measurements will be required in order to fully examine the seasonal variability and distribution of primary biological aerosol particles through the canopy. This is the first time that such a suite of measurements has been deployed at this site to investigate the chemical composition and properties of the biogenic contributions to Amazonian aerosol during the transition period from the wet to the dry season, and thus provides a unique comparison to the aerosol properties observed during the wet season in previous similar campaigns. This was also the first deployment of a WIBS in the Amazon rainforest to study coarse-mode particles, particularly primary biological aerosol particles, which are likely to play an important role as ice nuclei in the region.


Sign in / Sign up

Export Citation Format

Share Document