scholarly journals PEMANFAATAN HUTAN KOTA DI WILAYAH JAKARTA TIMUR SEBAGAI KAWASAN REKREASI MASYARAKAT KOTA

2019 ◽  
Vol 10 (2) ◽  
pp. 47-55
Author(s):  
Nike Dyah Permata ◽  
. Syartinilia ◽  
Aris Munandar

Urban forests have benefits for urban recreational activities for dwellers and also the identity of a city. East Jakarta is one of the areas in DKI Jakarta that has the largest number of urban forests currently. Urban forest has not been utilized optimally by the dwellers. For recreation activities, urban forest utilization for recreation activities become an interesting to observe. Therefore, the objective of this study was to analyzed urban forests utilization by the dwellers,especially in East Jakarta. Observation was done through interview and then was analyzed using linier regression. Urban forests coverage area were determined through buffer analysis using the level of urban forest accessibility by walk. The results shown that 85% urban forests was visited by dwellers came from inside urban forest coverage area. Recreational activities recorded while observed in the urban forest were exercising, sightseeing, picnic, camping, etc. The number of object in each urban forest was positively correlated with the high proportion of visitor from outside the urban forest coverage area.

2018 ◽  
Vol 10 (12) ◽  
pp. 4397 ◽  
Author(s):  
Yang Li ◽  
Chunyan Xue ◽  
Hua Shao ◽  
Ge Shi ◽  
Nan Jiang

The landscape patterns of urban forests not only reflect the influence of urbanization on urban forests, but also determines its function in urban ecosystem services. In the case of mastering the overall forest landscape pattern of a city, a study of the structure of urban forest landscapes at different scales and in urbanized regions is beneficial to a comprehensive understanding of the forest characteristics of a city. In the present study, an attempt was made to map and monitor the spatio-temporal dynamics of an urban forest in Shanghai from 2004 to 2014 using remote sensing techniques. Methods of landscape ecology analysis are followed to quantify the spatiotemporal patterns of an urban forest landscape by urban and rural gradient regionalization. The results show that the spatial structure of an urban forest landscape is essentially consistent with an urban landscape pattern. Due to strong interference from human activities, the ecological quality of forest landscapes is low. At the landscape level, the urban forest coverage rate increased from 11.43% in 2004 to 16.02% in 2014, however, the number of large patches decreased, there was a high degree of urban forest landscape fragmentation, landscape connectivity was poor, landscape patch boundaries were uniform, and weak links were present between ecological processes. Different urban and rural gradient division methods exhibit obvious gradient characteristics along the urban–rural gradient in Shanghai. The regional differences in the urban forest landscape ecological characteristics have further increased as a result of urban planning and zoning. The total amount of urban forest is located closer to the urban center, which has the smallest total amount of forest; however, in terms of urban forest coverage, the suburbs have more coverage than do the outer suburbs and the central urban areas. The urban forest landscape’s spatial distribution area is evidently different. Urbanization affects the areas closest to urban residential areas, which are markedly disturbed by humans, and the urban forest landscape has a high degree of fragmentation. The forest patches have become divided and unconnected, and the degree of natural connectivity has gradually decreased over the past 10 years. At the landscape class level, broadleaf forests are dominant in Shanghai, and their area exhibits an increasing trend; shrublands and needleleaf forests, however, show a decreasing trend. Compared with other forest types, the spatial distribution of broadleaf forest is concentrated in the suburbs, and the aggregation effect is relatively apparent. From the perspective of urban forest landscape pattern aggregation characteristics in Shanghai, the spatial distribution of urban forest landscape point patterns in the study area exhibit extremely uneven characteristics. The point density of urban forest patches larger than 1 ha in Shanghai increased from 2004 to 2014. However, the total number of patches with areas larger than 5 ha decreased, and this decrease plays an important role in the ecological environment. In the past 10 years, the concentration characteristics of urban forests with large patches has gradually decreased. In 2014, the urban forest landscapes decreased by 5 km compared to the intensity of aggregates in 2004, which also indicates that urban forests in Shanghai tend to be fragmented. The results of this study can be useful to help improve urban residents’ living environments and the sustainable development of the urban ecosystem, and they will also be vital to future management.


2006 ◽  
Vol 38 (2) ◽  
pp. 279-285 ◽  
Author(s):  
Pengyu Zhu ◽  
Yaoqi Zhang

This study examines the relationship between urban forests and household income and population density in the 149 cities with populations over 40,000 in nine southeastern states. Our empirical results show that urban forest percentage across the cities has characteristics of the environmental Kuznets curve. We find that household income around $39,000 is a threshold that changes the relationship between income and urban forest coverage from negative to positive, whereas the impact of population density on urban forests is just the opposite, from positive to negative when population density is around 180 persons per square kilometer.


Author(s):  
Wenjun Duan ◽  
Cheng Wang ◽  
Nancai Pei ◽  
Chang Zhang ◽  
Lin Gu ◽  
...  

Abstract: Research Highlights: This study is among the first to investigate ozone levels in urban forests in China. It establishes that urban forest air quality in Yuanshan Forest Park, Shenzhen, is suitable for recreational activities and identifies spatial, seasonal, and diurnal O3 patterns and relationships with micrometeorological parameters, suggesting the possibility of manipulating relevant forest characteristics to reduce O3 levels. Background and Objectives: An understanding of O3 levels of urban forest environments is needed to assess potential effects on human health and recreational activities. Such studies in China are scarce. This study investigated urban forest O3 levels to improve understanding and support residents engaging in forest recreational activities. Materials and Methods: We monitored O3 levels in 2015–2016 for three urban forests representing common habitats (foothill, valley, and ridge) in Yuanshan Forest Park, Shenzhen, and for an adjacent square. Results: The overall mean daily and daily maximum 8-h mean (MDA8) O3 concentrations were highest for the ridge forest and lowest for the valley forest. Each forest’s O3 concentrations were highest in summer. Diurnally, forest O3 concentrations peaked between 13:00 and 17:00 and reached a minimum between 03:00 and 09:00. The correlation between forest O3 concentrations and air temperature (AT) was strongly positive in summer and autumn but negative in spring. In each season, O3 concentration was negatively correlated with relative humidity (RH). No MDA8 or hourly O3 concentrations in the forests exceeded National Ambient Air Quality Standard Grade I thresholds (100 and 160 μg m−3, respectively). Conclusions: O3 accumulation is present in ridge urban forest in all seasons. Foothill and valley urban forests have better air quality than ridge forestation. Urban forest air quality is better in spring and autumn than in summer and is better from night-time to early morning than from noon to afternoon.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 247 ◽  
Author(s):  
Wenjun Duan ◽  
Cheng Wang ◽  
Nancai Pei ◽  
Chang Zhang ◽  
Lin Gu ◽  
...  

This study is among the first to investigate ozone levels in urban forests in China. It establishes that urban forest air quality in Yuanshan Forest Park (Shenzhen) is suitable for recreational activities and identifies spatial, seasonal, and diurnal O3 patterns and relationships with micrometeorological parameters, suggesting the possibility of manipulating relevant forest characteristics to reduce Surface ozone (O3) levels. An understanding of O3 levels of urban forest environments is needed to assess potential effects on human health and recreational activities. Such studies in China are scarce. This study investigated urban forest O3 levels to improve understanding and support residents engaging in forest recreational activities. We monitored O3 levels in 2015–2016 for three urban forests representing common habitats (foothill, valley, and ridge) in Yuanshan Forest Park and for an adjacent square. The overall mean daily and daily maximum 8 h mean (MDA8) O3 concentrations were highest for the ridge forest and lowest for the valley forest. Each forest’s O3 concentrations were highest in summer. Diurnally, forest O3 concentrations peaked between 13:00 and 17:00 and reached a minimum between 03:00 and 09:00. The correlation between forest O3 concentrations and air temperature (AT) was strongly positive in summer and autumn but negative in spring. In each season, O3 concentration was negatively correlated with relative humidity (RH). No MDA8 or hourly O3 concentrations in the forests exceeded National Ambient Air Quality Standard Grade I thresholds (100 and 160 μg m−3, respectively). O3 accumulation is present in ridge urban forest in all seasons. Foothill and valley urban forests have better air quality than ridge forestation. Urban forest air quality is better in spring and autumn than in summer and is better from night-time to early morning than from noon to afternoon.


2020 ◽  
Vol 3 (1) ◽  
pp. 78
Author(s):  
Francis Oloo ◽  
Godwin Murithi ◽  
Charlynne Jepkosgei

Urban forests contribute significantly to the ecological integrity of urban areas and the quality of life of urban dwellers through air quality control, energy conservation, improving urban hydrology, and regulation of land surface temperatures (LST). However, urban forests are under threat due to human activities, natural calamities, and bioinvasion continually decimating forest cover. Few studies have used fine-scaled Earth observation data to understand the dynamics of tree cover loss in urban forests and the sustainability of such forests in the face of increasing urban population. The aim of this work was to quantify the spatial and temporal changes in urban forest characteristics and to assess the potential drivers of such changes. We used data on tree cover, normalized difference vegetation index (NDVI), and land cover change to quantify tree cover loss and changes in vegetation health in urban forests within the Nairobi metropolitan area in Kenya. We also used land cover data to visualize the potential link between tree cover loss and changes in land use characteristics. From approximately 6600 hectares (ha) of forest land, 720 ha have been lost between 2000 and 2019, representing about 11% loss in 20 years. In six of the urban forests, the trend of loss was positive, indicating a continuing disturbance of urban forests around Nairobi. Conversely, there was a negative trend in the annual mean NDVI values for each of the forests, indicating a potential deterioration of the vegetation health in the forests. A preliminary, visual inspection of high-resolution imagery in sample areas of tree cover loss showed that the main drivers of loss are the conversion of forest lands to residential areas and farmlands, implementation of big infrastructure projects that pass through the forests, and extraction of timber and other resources to support urban developments. The outcome of this study reveals the value of Earth observation data in monitoring urban forest resources.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 806
Author(s):  
Wan-Yu Liu ◽  
Yo-Zheng Lin ◽  
Chi-Ming Hsieh

Urban forests offer multiple functions: they can balance negative effects from the environment and provide the public with a place for leisure and recreation. Hence, urban forests are crucial to urban ecology and have been widely studied. In addition, relevant study results were applied for policymaking in urban development and forest park management. This study evaluated the ecological value of the Sinhua Forest Park and examined whether the socioeconomic background of participants influences their willingness to pay (WTP) for ecological conservation. Questionnaires were distributed to visitors in the Sinhua Forest Park in Tainan, Taiwan, and the payment card format of the contingent valuation method was employed to evaluate the ecological value. The results showed that the visitors had an annual WTP of $22.01 per person. However, when samples with protest responses were excluded, the WTP rose to $24.58. By considering the total number of visitors of a year, the total ecological value was $1,426,964.14/year and reached $1,593,257.31/year after excluding the protest samples. This study also analyzed participants’ within-variable socioeconomic background (e.g., gender and education) and discovered that male participants who are aged 60 years or older, with an education level of senior/vocational high school, and those who visited green spaces two to three times per week presented a high WTP score on average. A Tobit regression model was employed for examination, and the results indicated that participants’ education and frequency of visiting green spaces significantly influenced their WTP for the ecological conservation of the Sinhua Forest Park.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 394
Author(s):  
Xinhui Xu ◽  
Zhenkai Sun ◽  
Zezhou Hao ◽  
Qi Bian ◽  
Kaiyue Wei ◽  
...  

Forests can affect soil organic carbon (SOC) quality and distribution through forest types and traits. However, much less is known about the influence of urban forests on SOC, especially in the effects of different forest types, such as coniferous and broadleaved forests. Our objectives were to assess the effects of urban forest types on the variability of SOC content (SOC concentration (SOCC) and SOC density (SOCD)) and determine the key forest traits influencing SOC. Data from 168 urban forest plots of coniferous or broadleaved forests located in the Beijing urban area were used to predict the effects of forest types and traits on SOC in three different soil layers, 0–10 cm, 10–20 cm, and 20–30 cm. The analysis of variance and multiple comparisons were used to test the differences in SOC between forest types or layers. Partial least squares regression (PLSR) was used to explain the influence of forest traits on SOC and select the significant predictors. Our results showed that in urban forests, the SOCC and SOCD values of the coniferous forest group were both significantly higher than those of the broadleaved group. The SOCC of the surface soil was significantly higher than those of the following two deep layers. In PLSR models, 42.07% of the SOCC variance and 35.83% of the SOCD variance were explained by forest traits. Diameter at breast height was selected as the best predictor variable by comparing variable importance in projection (VIP) scores in the models. The results suggest that forest types and traits could be used as an optional approach to assess the organic carbon stock in urban forest soils. This study found substantial effects of urban forest types and traits on soil organic carbon sequestration, which provides important data support for urban forest planning and management.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Han Zhi-Ying ◽  
Youn Yeo-Chang

This paper aims to investigate the Beijing resident’s preferences over various options of urban forest management strategies. The literature investigation and expert Delphi method were conducted to classify the ecosystem services of urban forests into six categories: (1) fresh water provision, (2) noise reduction, (3) moderation of extreme events, (4) air quality regulation, (5) species diversity and wildlife habitat, and (6) recreation and spiritual experience. To elicit the relative preferences to ecosystem service (hereafter referred to as ES) of Beijing residents, we employed the choice experiment method. The data were collected by interviews with questionnaires conducted in October 2017, and a total of 483 valid questionnaires were analyzed. The subjects of this experiment were residents older than 19 years old who have lived in Beijing for more than 1 year and have visited any one of the urban forests located in Beijing more than once during 2016. The results were as follows: Firstly, the air quality regulation ES was considered as the most important service for Beijing residents in terms of their choices of urban forest. In addition, Beijing residents regarded the fresh water provision ES as the second most important ES. Beijing residents were willing to pay up to 1.84% of the average monthly income of Chinese households annually to expand urban forest ecosystems in order to improve air quality. Secondly, apartment owners were willing to pay more municipality tax for forest ESs than residents who did not own an apartment. Thirdly, residents were more willing to pay for urban forest ESs as their income increases. The results indicated that Beijing residents were willing to pay more tax in support of urban forestry for air quality improvement. This research suggests that urban environmental policy makers in Beijing should pay more attention to the regulation function of forests (especially improving air quality) when designing and managing urban forests.


Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 17 ◽  
Author(s):  
Justyna Jaworek-Jakubska ◽  
Maciej Filipiak ◽  
Adam Michalski ◽  
Anna Napierała-Filipiak

Knowledge about urban forests in Poland is still limited, as it is primarily based on aggregate, formal data relating to the general area, ignoring the spatial dimension and informal green areas. This article describes and analyses spatio-temporal changes in the actual urban forest resources in Wrocław in 1944–2017, which covers the first period of the city’s rebuilding after its destruction during World War II and its development during the nationalised, centrally-planned socialist economy, as well as the second period of intensive and only partly controlled growth under conditions of market economy. The study is based on current and historical orthophotomaps, which were confronted with cartographic data, as well as planning documents. We found that between 1944 and 2017, the percentage contribution of informal woodlands increased tenfold (from 0.5 to 4.9% of the present total area of the city). The area occupied by such forests has grown particularly during the most recent years of the city’s intensive development. However, the forests have been increasingly fragmented. During the first period, new forest areas were also created in the immediate vicinity of the city centre, while during the second one, only in its peripheral sections. The post-war plans regarding the urban green spaces (UGS), including the current plan, are very conservative in nature. On the one hand, this means no interference with the oldest, biggest, and most valuable forest complexes, but on the other hand, insufficient consideration of the intensive built-up area expansion on former agriculture areas. Only to a limited extent did the above-mentioned plans take into account the informal woodlands, which provide an opportunity for strengthening the functional connectivity of landscape.


2019 ◽  
Vol 10 (2) ◽  
pp. 107-116 ◽  
Author(s):  
Elias Milios ◽  
Kyriaki Kitikidou ◽  
Kalliopi Radoglou

Background and Purpose: In Greece, forest practice did not develop special silvicultural treatments for planted conifer peri-urban forests where broadleaf trees appear as natural regeneration in the understory. The aims of this study are: a) to analyze the new proposed selective silvicultural treatments for the planted peri-urban forest of Xanthi and for analogous planted conifer forests, where broadleaf trees are naturally established in the understory b) to check the research hypothesis that the new selective silvicultural treatments exhibited higher intensity in terms of the basal area of cut trees, compared to that of traditional treatments in the studied peri-urban forest. Materials and Methods: In the traditional treatments, in the pine overstory cuttings, apart from the dead trees, mainly the malformed, damaged, suppressed and intermediate trees were cut. In the lower stories, the goal of the thinning was the more or less uniform distribution of broadleaf trees. In the proposed selective treatments, the main aim of pine cuttings is to release the broadleaf formations growing in the lower stories, while the treatments of the broadleaf trees will be a form of “positive selection” thinning. Plots were established in areas where the two types of treatments were going to be applied. In each plot, tree measurements and a classification of living trees into crown classes took place. After the application of the treatments the characteristics of cut trees were recorded. Results: In the established plots, before the cuttings (and thinning), total basal area was not statistically significantly different between the two types of treatments. In selective treatments, the basal area of all cut trees was statistically significantly higher than that of the results of traditional treatments. In the broadleaf cut trees there were statistical differences in the ratios of dominant, intermediate and suppressed trees between the two silvicultural approaches. Conclusions: The research hypothesis was verified. The intensity of treatments in terms of the basal area of cut trees was higher in the selective approach, compared to the traditional treatments in the Xanthi peri-urban forest. However, the overstory cutting intensity of the selective treatments depends on the spatial distributions and densities of broadleaved and conifer trees. In the broadleaf trees, the different objectives of the two types of treatments resulted in thinning with different qualitative characteristics. The proposed silvicultural treatments will accelerate the conversion of peri-urban conifer forests having an understory of broadleaf trees into broadleaved forests, or into mixed forests of conifers and broadleaf trees.


Sign in / Sign up

Export Citation Format

Share Document