scholarly journals Cocoa Production Stability in Relation to Changing Rainfall and Temperature in East Java, Indonesia

2018 ◽  
Vol 5 (1) ◽  
pp. 6-17
Author(s):  
Edi Santosa ◽  
Ginanjar Pramudya Sakti ◽  
Muhamad Zainul Fattah ◽  
Sofyan Zaman ◽  
Ade Wahjar

Climate change as indicated by rising temperature and changing rainfall pattern has been known to affect cacao production in many production countries. However, studies on the effects of rainfall and temperature variability on the cacao production are rarely reported in Indonesia. Hence, the objective of this study is to evaluate the stability of cocoa production in relation to rainfall and temperature variability in order to develop sustainable production under climate change scenario. Research was conducted at a state owned company in Jember District, East Java, Indonesia from February to June 2015. Production and climatic data of 2010-2015 were evaluated using simple regression and correlation analysis. Results revealed that productivity fluctuated among months and among years. However, the fluctuation among months (s2 = 117.076) was lower than among years (s2 = 311.225). Rainfall and temperature showed variability among months and among years; and the fluctuation among months was lower in both rainfall and temperature. Rainfall at one to four months before harvest correlated with production (r=0.400-0.671; P= 0.000 to 0.001) and temperature at two to four months before harvest determined cocoa production (r=0.371-0.412; P=0.001-0.003). High monthly cocoa production coincided with decreasing temperature and rainfall for 4 to 5 months during pod development. The presented study implies that both short and long term strategies should be implemented under climatic variability to sustain cocoa production. It is recommended to apply production technology to stabilize micro climate temperature and to minimize the impact of high rainfall such as shade plant and canopy manipulation.

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


2017 ◽  
Vol 20 (2) ◽  
pp. 187-190 ◽  
Author(s):  
Bradley Plunkett ◽  
Andrew Duff ◽  
Ross Kingwell ◽  
David Feldman

The average size of Australian farms in scale and revenue are the globe’s largest. This scale is a result, in part, of low average rural population densities; development patterns in broadacre production; low levels of effective public policy transfers; a stable and suitable institutional setting suitable for corporate and other large scale investment; and low yields. It is also a factor of the natural variability of the country’s climatic systems which have contributed to the scale of extensive northern cattle production; this variability has implications for the pattern of ownership of broadacre and extensive production. Corporate ownership, tends to concentrate production aggregations at sufficient scale to offset its additional overheads in areas of relative climatic stability and to replicate these agroholding aggregations spatially to protect the stability of revenue flows. Family structures are more dominant in areas of greater climatic variability. Of interest is the impact that any increasing climatic variability (versus rapid changes in technology) may have upon this pattern.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 190
Author(s):  
Robert Ugochukwu Onyeneke ◽  
Chukwuemeka Chinonso Emenekwe ◽  
Jane Onuabuchi Munonye ◽  
Chinyere Augusta Nwajiuba ◽  
Uwazie Iyke Uwazie ◽  
...  

An in-depth understanding of the impact of vulnerability on livelihoods and food security is important in deploying effective adaptation actions. The Nigerian agricultural sector is dominated by rainfed and non-homogenous smallholder farming systems. A number of climate change risk studies have emerged in the last decade. However, little attention has been given to vulnerability assessments and the operationalization of vulnerability. To highlight this shortcoming, this study systematically reviewed climate-change-focused vulnerability assessments in the agricultural sector by evaluating (1) variation in climate variables in Nigeria over time; (2) the state of climate change vulnerability assessment in Nigerian agriculture; (3) the theoretical foundations, operationalization approaches, and frameworks of vulnerability assessments in Nigeria; (4) the methods currently used in vulnerability assessments; and (5) lessons learned from the vulnerability studies. We used a linear trend of climatic data spanning over a period of 56 years (1961–2016) obtained from the Nigerian Meteorological Agency and the Climate Research Unit of the University of East Anglia, United Kingdom, along with a systematic review of literature to achieve the objectives. The analysis indicates a significant and positive correlation between temperature and time in all major agro-ecological zones. For precipitation, we found a non-significant correlation between precipitation in the Sahel, Sudan, and Guinea Savanna zones with time, while the other zones recorded positive but significant associations between precipitation and time. The systematic review findings indicate no clear progress in publications focused specifically on vulnerability assessments in the Nigerian agricultural sector. There has been progress recently in applying frameworks and methods. However, there are important issues that require addressing in vulnerability assessments, including low consideration for indigenous knowledge and experience, unclear operationalization of vulnerability, non-standardization of vulnerability measures, and inadequacy of current assessments supporting decision making.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Saul C. Mpeshe ◽  
Livingstone S. Luboobi ◽  
Yaw Nkansah-Gyekye

A deterministic SEIR model of rift valley fever (RVF) with climate change parameters was considered to compute the basic reproduction numberℛ0and investigate the impact of temperature and precipitation onℛ0. To study the effect of model parameters toℛ0, sensitivity and elasticity analysis ofℛ0were performed. When temperature and precipitation effects are not considered,ℛ0is more sensitive to the expected number of infectedAedesspp. due to one infected livestock and more elastic to the expected number of infected livestock due to one infectedAedesspp. When climatic data are used,ℛ0is found to be more sensitive and elastic to the expected number of infected eggs laid byAedesspp. via transovarial transmission, followed by the expected number of infected livestock due to one infectedAedesspp. and the expected number of infectedAedesspp. due to one infected livestock for both regions Arusha and Dodoma. These results call for attention to parameters regarding incubation period, the adequate contact rate ofAedesspp. and livestock, the infective periods of livestock andAedesspp., and the vertical transmission inAedesspecies.


Author(s):  
Kenneth Ofori-Boateng ◽  
Baba Insah

Purpose – The study aimed at examining the current and future impact of climate change on cocoa production in West Africa. Design/methodology/approach – A translog production function based on crop yield response framework was used. A panel model was estimated using data drawn from cocoa-producing countries in West Africa. An in-sample simulation was used to determine the predictive power of the model. In addition, an out-sample simulation revealed the effect of future trends of temperature and precipitation on cocoa output. Findings – Temperature and precipitation play a considerable role in cocoa production in West Africa. It was established that extreme temperature adversely affected cocoa output in the sub-region. Furthermore, increasing temperature and declining precipitation trends will reduce cocoa output in the future. Practical implications – An important implication of this study is the recognition that lagging effects are the determinants of cocoa output and not coincident effects. This finds support from the agronomic point of view considering the gestation period of the cocoa crop. Originality/value – Although several studies have been carried out in this area, this study modeled and estimated the interacting effects of factors that influence cocoa production. This is closer to reality, as climatic factors and agricultural inputs combine to yield output.


Author(s):  
Baljeet Kaur ◽  
Som Pal Singh ◽  
P.K. Kingra

Background: Climate change is a nonpareil threat to the food security of hundred millions of people who depends on agriculture for their livelihood. A change in climate affects agricultural production as climate and agriculture are intensely interrelated global processes. Global warming is one of such changes which is projected to have significant impacts on environment affecting agriculture. Agriculture is the mainstay economy in trans-gangetic plains of India and maize is the third most important crop after wheat and rice. Heat stress in maize cause several changes viz. morphological, anatomical and physiological and biochemical changes. Methods: In this study during 2014-2018, impact of climate change on maize yield in future scenarios was simulated using the InfoCrop model. Average maize yield from 2001-15 was collected for Punjab, Haryana and Delhi to calibrate and validate the model. Future climatic data set from 2020 to 2050 was used in the study to analyse the trends in climatic parameters.Result: Analysis of future data revealed increasing trends in maximum temperature and minimum temperature. Rainfall would likely follow the erratic behaviour in Punjab, Haryana and Delhi. Increase in temperature was predicted to have negative impact on maize yield under future climatic scenario.


2020 ◽  
Vol 10 (3) ◽  
pp. 16
Author(s):  
Ado ALI ◽  
Laouali ABDOU ◽  
Maman Maârouhi INOUSSA ◽  
Josiane SEGHIERI ◽  
Ali MAHAMANE

The human use of plant resources and land to face increasing population needs in Africa to the regression or even the disappearance of some useful multi-purpose species such as Diospyros mespiliformis Hochst. Ex A. Rich. Increasing climatic variability is an additional threat for these species. The present study aims to identify the areas that are potentially favorable to D. mespiliformis conservation or regeneration in Niger and to analyze the impact of the current climate change. Thus to assess the D. mespiliformis distribution areas, the geographic coordinates of D. mespiliformis, the bioclimatic data, the soil and vegetation cover were collected and used to modeling based on the principle of maximum entropy (MaxEnt). The soil cover, annual cumulated precipitations and the average temperature are the most determining variables. This study also shows that the ecological niche of D. mespiliformis is located in the Central and Eastern bioclimates, within which almost 3% of the surface is very favorable under the current climate conditions and may reach 3. 94 % under 2050 ones after. These results indicate that the climate change expected in Niger is expected to be more favorable to the studied species than the current climate conditions. This represents an opportunity for its domestication.


Author(s):  
Ifie-emi Francis Oseke ◽  
Geophery Kwame Anornu ◽  
Kwaku Amaning Adjei ◽  
Martin Obada Eduvie

Abstract. The strategies and actions in the management of African River Basins in a warming climate environment have been studied. Using the Gurara Reservoir Catchment in North-West Nigeria as a case study, summations were proposed using hypothetical climate scenarios considering the Global Climate Models prediction and linear trend of the data. Four (4) proposed scenarios of temperature increase (1 % and 2 %) coupled with a decrease in precipitation of (−5 % and −10 %) were combined and applied for the study area. The Water Evaluation and Planning Tool was used to model and evaluates the impact of the earth's rising temperature and declining rainfall on the hydrology and availability of water by investigating its resilience to climate change. Modelling results indicate a reduction in available water within the study area from 4.3 % to 3.5 % compared to the baseline with no climate change scenario, revealing the current water management strategy as not sustainable, uncoordinated, and resulting in overexploitation. The findings could assist in managing future water resources in the catchment by accentuating the need to put in place appropriate adaptation measures to foster resilience to climate change. Practically, it is pertinent to shape more effective policies and regulations within catchments for effective water resources management in reducing water shortage as well as achieving downstream water needs and power benefit in thefuture, while also allowing flexibility in the operation of a reservoir with the ultimate goal of adapting to climate change.


2021 ◽  
Author(s):  
fatemeh sani ◽  
Ghader Dashti ◽  
Abolfazl Majnooni ◽  
Javad Hosseinzad

Abstract Climate change is one of the main issues in the 21st century and has been felt in many regions of world such as the Ajichay basin. The greatest impact of climate change is on the water resource sector. Projected changes in precipitation, temperature and river runoff will largely affect the water cycle and hydrological systems with important results for economic sector. Therefore, the current study aims to investigate the impact of climate and water management scenarios on water resources, cropping patterns, yields, and profits of farmers using a hydro-economic model. Quadratic risk programming was used for economic modeling, and WEAP-MABIA was applied for hydrological modeling. The necessary data were collected from questionnaires completed by 210 farmers selected by stratified random sampling during 2018. The HadCM3 model and LARS-WG downscaling were used to generate daily climatic data under the emissions of A2, B1, and A1B scenarios. The results showed that climate change could reduce the profit and employment rate in the agricultural sector and cause a shift in cropping patterns to crops with low water requirements. In addition to the efficient use of allocated water, the application of increasing irrigation efficiency scenario could raise farmers' profits, providing them with a better situation than the agricultural water reduction scenario. Overall, the findings of the current study revealed that without changing the management strategies there will be a considerable reduction in water resource and crop yield in near future.


Author(s):  
Agung Wahyu Susilo ◽  
Bayu Setyawan ◽  
Indah Anita Sari

El Nino effect as impact from global climate change needed anticipation effectively to keep cocoa production still give farmer benefit because effect of long dry season make some trouble in cocoa production. Cocoa production technology package that suitable in dry land needed for sustainable and empowerment cocoa production in marginal dry land. Principal component of this technology package is superior planting material because success of cocoa production depend on accuracy of selecting planting material. Indonesian Coffee and Cocoa Research Institute consistently carries out cocoa breeding programs aimed at overcoming problems in the field, specifically to obtain superior planting material that is tolerant to biotic and abiotic stress. This research method was carried out by observing 22 promising clones of cocoa that were planted in the Kaliwining experimental station in the 2013-2017 observation period, each clone planted in three blocks. The observed variables included estimation of production, resistance to VSD, helopeltis, and pod rot. Based on multivariate analysis, it was found that ICCRI 09 had a stable production performance from 2013 - 2017 while the promising clone of KW 641 had a special adaptation to dry conditions. Both of these clones have the potential to be developed as drought tolerant planting material to overcome the impact of climate change on cocoa production. The observation results of pest and disease attacks obtained a pattern that the clones that have tolerance to drought have good resistance to VSD.


Sign in / Sign up

Export Citation Format

Share Document