Metode SVM Untuk Klasifikasi Enam Tumbuhan Zingiberaceae Menggunakan Variabel Terpilih Hasil Algoritma Genetika

2021 ◽  
Vol 10 (2) ◽  
pp. 129-139
Author(s):  
Triyani Oktaria ◽  
Utami Dyah Syafitri ◽  
Mohamad Rafi ◽  
Farit M Afendi

Ginger, red ginger, emprit ginger, elephant ginger, red galangal and white galangal are known to have similar shapes and uses, especially those that are packaged in powder form. In this study, UV-Vis spectrum 200nm-700nm were used as a source of data from chemical compound contain in those plants for classification of the six plants. In this research, the support vector machine (SVM) classification method was used to classify the six plants. Another goal of this study was to identify the wavelengths which give more information about the chemical compound of the plants. The preprocessing procedure was implemented by construction of a genetic algorithm. There were four parameters in the genetic algorithm were set namely population size, crossover probability, mutation, and generation probability. The mutation and the population size influenced significantly the results of SVM. The best result was given by probability of mutation was 10 and population size was 30. The SVM model was better than the SVM model without preprocessing procedure.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2503
Author(s):  
Taro Suzuki ◽  
Yoshiharu Amano

This paper proposes a method for detecting non-line-of-sight (NLOS) multipath, which causes large positioning errors in a global navigation satellite system (GNSS). We use GNSS signal correlation output, which is the most primitive GNSS signal processing output, to detect NLOS multipath based on machine learning. The shape of the multi-correlator outputs is distorted due to the NLOS multipath. The features of the shape of the multi-correlator are used to discriminate the NLOS multipath. We implement two supervised learning methods, a support vector machine (SVM) and a neural network (NN), and compare their performance. In addition, we also propose an automated method of collecting training data for LOS and NLOS signals of machine learning. The evaluation of the proposed NLOS detection method in an urban environment confirmed that NN was better than SVM, and 97.7% of NLOS signals were correctly discriminated.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 495
Author(s):  
Imayanmosha Wahlang ◽  
Arnab Kumar Maji ◽  
Goutam Saha ◽  
Prasun Chakrabarti ◽  
Michal Jasinski ◽  
...  

This article experiments with deep learning methodologies in echocardiogram (echo), a promising and vigorously researched technique in the preponderance field. This paper involves two different kinds of classification in the echo. Firstly, classification into normal (absence of abnormalities) or abnormal (presence of abnormalities) has been done, using 2D echo images, 3D Doppler images, and videographic images. Secondly, based on different types of regurgitation, namely, Mitral Regurgitation (MR), Aortic Regurgitation (AR), Tricuspid Regurgitation (TR), and a combination of the three types of regurgitation are classified using videographic echo images. Two deep-learning methodologies are used for these purposes, a Recurrent Neural Network (RNN) based methodology (Long Short Term Memory (LSTM)) and an Autoencoder based methodology (Variational AutoEncoder (VAE)). The use of videographic images distinguished this work from the existing work using SVM (Support Vector Machine) and also application of deep-learning methodologies is the first of many in this particular field. It was found that deep-learning methodologies perform better than SVM methodology in normal or abnormal classification. Overall, VAE performs better in 2D and 3D Doppler images (static images) while LSTM performs better in the case of videographic images.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hamideh Soltani ◽  
Zahra Einalou ◽  
Mehrdad Dadgostar ◽  
Keivan Maghooli

AbstractBrain computer interface (BCI) systems have been regarded as a new way of communication for humans. In this research, common methods such as wavelet transform are applied in order to extract features. However, genetic algorithm (GA), as an evolutionary method, is used to select features. Finally, classification was done using the two approaches support vector machine (SVM) and Bayesian method. Five features were selected and the accuracy of Bayesian classification was measured to be 80% with dimension reduction. Ultimately, the classification accuracy reached 90.4% using SVM classifier. The results of the study indicate a better feature selection and the effective dimension reduction of these features, as well as a higher percentage of classification accuracy in comparison with other studies.


2014 ◽  
Vol 687-691 ◽  
pp. 3917-3922
Author(s):  
Yi Chang Wang ◽  
Feng Qi Yan ◽  
Yu Fang

ECG signal contains abundant information of human heart activity. It is important basis of doctors’ diagnose. With the development of computer technology, computer aided analysis has been widely applied in the field of ECG analysis. Most of the traditional method is based on single classifier and too complex. Also, the accuracy is not high. This paper focuses on ECG heart beat classification, extracting different types of feature, training different classifiers by vector model and support vector machine (SVM), merging the result of multiple classifiers. In this paper, we used the advanced voting method (voting by weight) to fusion the result of different classifier, having compared it with the traditional voting method.It performed better than traditional method in term of accuracy


2017 ◽  
Vol 9 (4) ◽  
pp. 416 ◽  
Author(s):  
Nelly Indriani Widiastuti ◽  
Ednawati Rainarli ◽  
Kania Evita Dewi

Classification is the process of grouping objects that have the same features or characteristics into several classes. The automatic documents classification use words frequency that appears on training data as features. The large number of documents cause the number of words that appears as a feature will increase. Therefore, summaries are chosen to reduce the number of words that used in classification. The classification uses multiclass Support Vector Machine (SVM) method. SVM was considered to have a good reputation in the classification. This research tests the effect of summary as selection features into documents classification. The summaries reduce text into 50%. A result obtained that the summaries did not affect value accuracy of classification of documents that use SVM. But, summaries improve the accuracy of Simple Logistic Classifier. The classification testing shows that the accuracy of Naïve Bayes Multinomial (NBM) better than SVM


2021 ◽  
Vol 16 ◽  
Author(s):  
Haohao Zhou ◽  
Hao Wang ◽  
Yijie Ding ◽  
Jijun Tang

Background: Antifungal peptides (AFP) have been found to be effective against many fungal infections. Objective: However, it is difficult to identify AFP. Therefore, it is great practical significance to identify AFP via machine learning methods (with sequence information). Method: In this study, a Multi-Kernel Support Vector Machine (MKSVM) with Hilbert-Schmidt Independence Criterion (HSIC) is proposed. Proteins are encoded with five types of features (188-bit, AAC, ASDC, CKSAAP, DPC), and then construct kernels using Gaussian kernel function. HSIC are used to combine kernels and multi-kernel SVM model is built. Results: Our model performed well on three AFPs datasets and the performance is better than or comparable to other state-of-art predictive models. Conclusion: Our method will be a useful tool for identifying antifungal peptides.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 519
Author(s):  
Jie Cao ◽  
Shijie Zhu ◽  
Chao Li ◽  
Bing Han

To predict the natural gas hydrate formation conditions quickly and accurately, a novel hybrid genetic algorithm–support vector machine (GA-SVM) model was developed. The input variables of the model are the relative molecular weight of the natural gas (M) and the hydrate formation pressure (P). The output variable is the hydrate formation temperature (T). Among 10 gas samples, 457 of 688 data points were used for training to identify the optimal support vector machine (SVM) model structure. The remaining 231 data points were used to evaluate the generalisation capability of the best trained SVM model. Comparisons with nine other models and analysis of the outlier detection revealed that the GA-SVM model had the smallest average absolute relative deviation (0.04%). Additionally, the proposed GA-SVM model had the smallest amount of outlier data and the best stability in predicting the gas hydrate formation conditions in the gas relative molecular weight range of 15.64–28.97 g/mol and the natural gas pressure range of 367.65–33,948.90 kPa. The present study provides a new approach for accurately predicting the gas hydrate formation conditions.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1442 ◽  
Author(s):  
Tao Shen ◽  
Hong Yu ◽  
Yuan-Zhong Wang

Gentiana, which is one of the largest genera of Gentianoideae, most of which had potential pharmaceutical value, and applied to local traditional medical treatment. Because of the phytochemical diversity and difference of bioactive compounds among species, which makes it crucial to accurately identify authentic Gentiana species. In this paper, the feasibility of using the infrared spectroscopy technique combined with chemometrics analysis to identify Gentiana and its related species was studied. A total of 180 batches of raw spectral fingerprints were obtained from 18 species of Gentiana and Tripterospermum by near-infrared (NIR: 10,000–4000 cm−1) and Fourier transform mid-infrared (MIR: 4000–600 cm−1) spectrum. Firstly, principal component analysis (PCA) was utilized to explore the natural grouping of the 180 samples. Secondly, random forests (RF), support vector machine (SVM), and K-nearest neighbors (KNN) models were built while using full spectra (including 1487 NIR variables and 1214 FT-MIR variables, respectively). The MIR-SVM model had a higher classification accuracy rate than the other models that were based on the results of the calibration sets and prediction sets. The five feature selection strategies, VIP (variable importance in the projection), Boruta, GARF (genetic algorithm combined with random forest), GASVM (genetic algorithm combined with support vector machine), and Venn diagram calculation, were used to reduce the dimensions of the data variable in order to further reduce numbers of variables for modeling. Finally, 101 NIR and 73 FT-MIR bands were selected as the feature variables, respectively. Thirdly, stacking models were built based on the optimal spectral dataset. Most of the stacking models performed better than the full spectra-based models. RF and SVM (as base learners), combined with the SVM meta-classifier, was the optimal stacked generalization strategy. For the SG-Ven-MIR-SVM model, the accuracy (ACC) of the calibration set and validation set were both 100%. Sensitivity (SE), specificity (SP), efficiency (EFF), Matthews correlation coefficient (MCC), and Cohen’s kappa coefficient (K) were all 1, which showed that the model had the optimal authenticity identification performance. Those parameters indicated that stacked generalization combined with feature selection is probably an important technique for improving the classification model predictive accuracy and avoid overfitting. The study result can provide a valuable reference for the safety and effectiveness of the clinical application of medicinal Gentiana.


Sign in / Sign up

Export Citation Format

Share Document