scholarly journals Analysis of Bandwidth and Working Frequency of Bi-circular Antenna

This paper discusses the analysis results of determining the bandwidth and working frequency of a bi-circular antenna design. The analysis was carried out using three approaches, namely the FDTD simulation method, the measurement method using a network analyzer on the fabrication results of the antenna design, and the method of applying the bi-polygonal antenna model to the bi-circular antenna design. The novelty in this research is the application of the bi-polygonal antenna model and the comparison of the results of determining the bandwidth and working frequency of a bi-circular antenna with these three methods. Based on the results of the analysis using these three methods, it was found that different bandwidth values and the same antenna working frequency value were 2.45 GHz. The modeling results give a narrow and symmetrical form of return loss vs. frequency curve, the simulation results give a wide and slightly symmetrical form of return loss vs. frequency curve, and the measurement results give a wide and asymmetrical shape of return loss vs. frequency curve.

Author(s):  
Petrus Kerowe Goran ◽  
Eka Setia Nugraha

Wireless Fidelity (WiFi) devices are often used to access the internet network, both for working and in information searching. Accessing the internet can be administered anywhere provided that the area is within the WiFi devices range. A WiFi device uses 2.4 GHz and 5 GHz operating frequencies. There were several methods employed in the previous studies so that an antenna design could work in two different frequencies, i.e., winding bowtie method, Sierpinski method, and double-circular method. This paper employed a simple method, the slit method. The objective of this paper is to discover a simple antenna model that works on 2.4 GHz and 5 GHz frequencies. This paper employed a square patch microstrip antenna with a slit method. The dimensions of the designed square patch microstrip antenna were 42.03 mm × 27.13 mm × 0.035 mm. The antenna worked at 2.4 GHz and 5 GHz frequencies. The obtained simulation results after the optimization showed that the square patch microstrip antenna using the slit method acquired a value of S11 (return loss) of -10.15 dB at a frequency of 2.4 GHz and -37.315 dB at a frequency of 5 GHz.


2020 ◽  
Vol 11 (1) ◽  
pp. 298
Author(s):  
Youchung Chung

In this paper, an inverted F type antenna (IFA) for ZigBee communication of a sensor board has been designed and optimized, and it replaces the chip antenna on an RF (Radio Frequency) module that is not performing well enough for the ZigBee communication. The sensor board detects cattle behavior and identifies the breeding (estrus) period and transmits the data to the main station by the RF (Radio Frequency) module and IFA antenna. The proposed and optimized TRx (transmitting/receiving) IFA antenna of the ZigBee communication module has a return loss of −19 dB and a gain of 1.6 dB at 2.45 GHz. The size is about 2.5 × 0.5 cm in width and vertical length, and the height is 0.55 cm. The strength of signals with the chip antenna and the IFA antenna have been measured and compared. There is about a 20 dB enhancement with the IFA antenna compared to the chip antenna. The antenna is designed and applied to the RF transmission and reception (TRx) module. This antenna and sensor module can be applied to livestock in general as well as cattle.


In this article, a novel offset microstrip line feed Rectangular Dielectric Resonator Antenna is used for bandwidth enhancement. The parameters such as Bandwidth, Return Loss and Radiation efficiency are improved in the proposed antenna. A comparison is also shown for the proposed feed structure with and without conformal strips. The improvement in the bandwidth is observed from 25% to 65% by optimizing the antenna design parameters. It works in three frequency bands, that is, 2.03-3.69 GHz, 3.86-7.26 GHz, and 7.32-9.26 GHz. The proposed antenna is appropriate for WIMAX/WLAN applications.


Author(s):  
Dina Mariani ◽  
Yanuar Mahfudz Safarudin

Digital television technology has more benefit than analog television, for example several TV channel may included in one frequency channel. The changing from analog to digital televisions system require more innovative antenna parameter such as working frequency, bandwidth, return loss, VSWR, and gain. In other hand, the size of the antenna must be minimalized, so it can be integrated inside digital television. This research used metamaterial element of Complementary Split Ring Resonator (CSSR) method with negative permittivity that manufactured in the patch and Double Pole Ground Plane in the ground side. The antenna ad 478-694 operating frequency. Antenna design and simulation using CST (Computer Simulation Technology) Microwave Studio 2012. The result show that return-loss value < -10 dB, and VSWR = 2 at 478-625 MHz range of frequency. Te value of gain is 3.27 dBi, it has 147 MHz bandwidth, and omnidirectional radiation pattern.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-4
Author(s):  
Wildan Wildan ◽  
Dwi Astuti Cahyasiwi ◽  
Syah Alam ◽  
Mohd Azman Zakariya ◽  
Harry Ramza

This research proposed microstrip circular patch antenna simulation at a working frequency 3500 MHz. The antenna has been designed using a Duroid RT5880 substrate with dielectric constant (εr) = 2.2, substrate thickness (h) = 1.575 mm, and tangent loss = 0.0009 with microstrip line feeding. The simulation result, return loss value obtained -26.385, VSWR value 1.09, gain value 7.64 dBi, total radiation efficiency value -0.6489 dB, and bandwidth value 72 MHz (3468.8 MHz – 3541.9 MHz).


Author(s):  
N. J. Ramly ◽  
M. K. A. Rahim ◽  
N. A. Samsuri ◽  
H. A. Majid

In this paper, leaf shape textile antenna in ISM band has been chosen to study. The operating frequency of the dipole antenna is 2.45GHz. The effect of conductive threads with three different types of sewing has been analysed. The first type of sewing leaf shape dipole antenna is to stitch around itself and embroidered into a fleece fabric with circular follow by vertical and horizontal stitch respectively. From measured return loss, the antenna with circular stitch shows better performances with optimum resonances compared with the two types of stitching. The measured results confirm that the circular stitch is more suitable for leaf shape dipole antenna design. Thus it can be concluded that different stitch gives different results for leaf shape dipole antenna.


2020 ◽  
Vol 14 (2) ◽  
pp. 104-110
Author(s):  
Mustafa Berkan Bicer

In this study, a coplanar waveguide-fed compact microstrip antenna design for applications operating at higher 5G bands was proposed. The antenna with the compact size of 8 x 12.2 mm2 on FR4 substrate, having the dielectric constant of 4.3 and the height of 1.55 mm, was considered. The dimensions of the radiating patch and ground plane were optimized with the use of artificial cooperative search (ACS) algorithm to provide the desired return loss performance of the designed antenna. The performance analysis was done by using full-wave electromagnetic package programs based on the method of moment (MoM) and the finite integration technique (FIT). The 10 dB bandwidth for return loss results obtained with the use of the computation methods show that the proposed antenna performs well for 5G applications operating in the 24.25 – 27.50 GHz, 26.50 – 29.50 GHz, 27.50 – 28.35 GHz and 37 – 40 GHz frequency bands.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Nikhil Singh ◽  
Ashutosh Kumar Singh ◽  
Vinod Kumar Singh

AbstractThe concept of wearable products such as textile antenna are being developed which are capable of monitoring, alerting and demanding attention whenever hospital emergency is needed, hence minimizing labour and resource. In the proposed work by using textile material as a substrate the ultra wideband antenna is designed especially for medical applications.Simulated and measured results here shows that the proposed antenna design meets the requirements of wide working bandwidth and provides 13.08 GHz bandwidth with very small size, washable (if using conductive thread for conductive parts) and flexible materials. Results in terms of bandwidth, radiation pattern, return loss as well as gain and efficiency are presented to validate the usefulness of the current proposed design. The work done here has many implications for future research and it could help patients with such flexible and comfortable medical monitoring techniques.


Sign in / Sign up

Export Citation Format

Share Document