scholarly journals Design & Performance of Wearable Ultra Wide Band Textile Antenna for Medical Applications

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Nikhil Singh ◽  
Ashutosh Kumar Singh ◽  
Vinod Kumar Singh

AbstractThe concept of wearable products such as textile antenna are being developed which are capable of monitoring, alerting and demanding attention whenever hospital emergency is needed, hence minimizing labour and resource. In the proposed work by using textile material as a substrate the ultra wideband antenna is designed especially for medical applications.Simulated and measured results here shows that the proposed antenna design meets the requirements of wide working bandwidth and provides 13.08 GHz bandwidth with very small size, washable (if using conductive thread for conductive parts) and flexible materials. Results in terms of bandwidth, radiation pattern, return loss as well as gain and efficiency are presented to validate the usefulness of the current proposed design. The work done here has many implications for future research and it could help patients with such flexible and comfortable medical monitoring techniques.

2018 ◽  
Vol 31 (4) ◽  
pp. 641-650 ◽  
Author(s):  
Seyed Naghdehforushha ◽  
Mahdi Bahaghighat ◽  
Mohammad Salehifar ◽  
Hossein Kazemi

In this paper, a novel design for planar plate monopole antennas is proposed with applications to ultra-wide band (UWB) communications. To verify the proposed antenna design, simulations are performed by means of CST and HFSS software tools, showing that the impedance bandwidth is significantly increased by vertical cross-sections. By adding a series of parameters to the vertical cross sections, the antenna efficiency is effectively enhanced by achieving a return loss of 10 dB over the bandwidth range between 3.1 GHz and 10.6 GHz. In addition, our experimental results demonstrate that the fabricated antenna has a return loss performance similar to that obtained by the simulation results.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 529 ◽  
Author(s):  
Ch Ramakrishna ◽  
G A.E.Satish Kumar ◽  
P Chandra Sekhar Reddy

This paper presents a band notched WLAN self complementaryultra wide band antenna for wireless applications. The proposed antenna encounters a return loss (RL) less than -10dB for entire ultra wideband frequency range except band notched frequency. This paper proposes a hexagon shape patch, edge feeding, self complementary technique and defective ground structure. The antenna has an overall dimensionof 28.3mm × 40mm × 2mm, builton  substrate FR4 with a relative dielectric permittivity 4.4. And framework is simulated finite element method with help of high frequency structured simulator HFSSv17.2.the proposed antenna achieves a impedance bandwidth of 8.6GHz,  band rejected WLAN frequency range 5.6-6.5 GHz with  vswr is less than 2.


Author(s):  
N. J. Ramly ◽  
M. K. A. Rahim ◽  
N. A. Samsuri ◽  
H. A. Majid

In this paper, leaf shape textile antenna in ISM band has been chosen to study. The operating frequency of the dipole antenna is 2.45GHz. The effect of conductive threads with three different types of sewing has been analysed. The first type of sewing leaf shape dipole antenna is to stitch around itself and embroidered into a fleece fabric with circular follow by vertical and horizontal stitch respectively. From measured return loss, the antenna with circular stitch shows better performances with optimum resonances compared with the two types of stitching. The measured results confirm that the circular stitch is more suitable for leaf shape dipole antenna design. Thus it can be concluded that different stitch gives different results for leaf shape dipole antenna.


Author(s):  
Mikhail Sedankin ◽  
Vitaly Leushin ◽  
Alexander Gudkov ◽  
Igor Sidorov ◽  
Sergey Chizhikov ◽  
...  

The article is devoted to the development of a printed ultra-wideband miniature antenna that can be used for microwave radiometry. An antenna design with a ring-shaped radiator has been proposed, which provides reception of microwave radiation from biological tissues in the 1800–4600 MHz range. The results of mathematical modeling of the antenna electromagnetic field in biological tissues using the finite difference time domain (FDTD) method are presented. Optimization of the antenna design has been carried out to ensure acceptable matching parameters and optimal antenna functionality. The developed antenna has a height of 6 mm and a calculated mass of 5 g; it is planned to manufacture a dielectric substrate based on PDMS polymer with the addition of barium titanate. The issues of calculating the antenna parameters (measurement depth, resolution and distribution of radiation power over the volume of biological tissue, sensitivity, etc.) are considered. The research results and design parameters of the developed antenna demonstrated the effectiveness of the new antenna and the possibility of its adaptation to the object of research. Considering the presence of an ultra-wide band and miniature dimensions, the antenna can be a sensor of a multi-frequency multi-channel microwave radiothermograph


2021 ◽  
Vol 9 (1) ◽  
pp. 22-31
Author(s):  
M. Saravanan, K. Devarajan

UltraWide Bandwidth (UWB) antenna with Deflected Ground Structure for wireless communication is presented in this paper. Our proposed antenna design is consisting of elliptical shape slot at patch and Quarter wave transmission line at the ground with multiband frequency operation in various wireless communications.An antenna is designed using FR4 substrate with permittivity value of 4.4 and thickness of 0.8 mm. The size of the antenna is 50 x 70 mm2presents a high gain of 4 dB with Ultra Wide Bandwidth. In proposed antenna quarter wave ground is imposed with Deflected Ground Structure to achieve overall size reduction. The ultra bandwidth antenna proposed in this paper operates at multiband frequencies centered at 3.0267 GHz, 6.1933 GHz, 9.1911 GHz, 12.1467 GHz, and 15.06 GHz with corresponding return loss of -24.0553 dB, -40.9292 dB, -20.7534 dB, -41.8718 dB, -30.1747 dB.


A compact egg-shaped super wide-band patch antenna with coplanar waveguide (CPW) feed is proposed. A much simpler design equation has been identified compared to previous reported works for egg-shaped patch antennas. An optimized egg shaped antenna has been designed and implemented on FR4 substrate with the dimensions 30mm x 27.5mm x 1.6mm.The antenna with geometry modifications has an impedance bandwidth 2.85-31.6 GHz. The performance of the antenna was validated analytically for super wideband (SWB) operation and experimentally for ultra-wideband (UWB) operation. A maximum gain of 4.4dBi and a minimum of 2dBi was observed at 6.5GHz and 3GHz respectively. A 30% reduction in patch area has been achieved compared to existing egg-shaped SWB antennas in literature. The lower frequency bound of the antenna is scalable with dimensions for lesser permittivity substrates which has been analytically validated. It is identified that the proposed antenna design could be used to achieve flexibility in bandwidth. This antenna is a potential candidate for super wideband applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Arnaut Dierck ◽  
Frederick Declercq ◽  
Thomas Vervust ◽  
Hendrik Rogier

Designing textile antennas for real-life applications requires a design strategy that is able to produce antennas that are optimized over a wide bandwidth for often conflicting characteristics, such as impedance matching, axial ratio, efficiency, and gain, and, moreover, that is able to account for the variations that apply for the characteristics of the unconventional materials used in smart textile systems. In this paper, such a strategy, incorporating a multiobjective constrained Pareto optimization, is presented and applied to the design of a Galileo E6-band antenna with optimal return loss and wide-band axial ratio characteristics. Subsequently, different prototypes of the optimized antenna are fabricated and measured to validate the proposed design strategy.


Author(s):  
Alaa Farhood ◽  
Maham Kamil Naji ◽  
Suhad Hasan Rhaif Hasan Rhaif ◽  
Adnan Ali

<span class="s22">In this paper, we proposed a hexagonal shaped </span><span class="s22">microstrip</span><span class="s22"> ultra-wideband (UWB) antenna integrated with dual band applications. The antenna design consists of a hexagonal shape patch with two folded Capacitive Loaded Line Resonators (CLLRs) on the left edge of the patch antenna. This hexagonal structure is used to implement UWB applications (3.1-10.6 GHz). A rectangular ground</span><span class="s22">,</span><span class="s22"> and two CLLR are also used on t</span><span class="s22">he bottom of antenna to obtain</span><span class="s22"> the extra dual resonant frequency at 2.4 GHz and 9.1 GHz for </span><span class="s22">B</span><span class="s22">luetooth and radar applications respectively. The proposed design is implemented using FR4 epoxy substrate. The relative permittivity of the substrate is 4</span><span class="s22">.4. The overall size of designing</span><span class="s22"> antenna is 26 × 30 mm2 with 1.6 mm as thickness and fed by standard feed line of 50 Ω </span><span class="s22">microstrip</span><span class="s22">. The results obtained from the simulation indicate that the designed antenna attains a good bandwidth from 1.1 GHz – 10.69 GHz with VSWR &lt; 2 and return loss &lt; -10 </span><span class="s22">dB.</span><span class="s22"> The proposed geometry is s</span><span class="s22">imulated  by using the </span><span class="s22">Ansoft</span><span class="s22"> HFSS </span><span class="s22">simulator working on the principle of FEM and results are also analyzed.</span>


Author(s):  
Madan Kumar Sharma ◽  
Mithilesh Kumar Kumar ◽  
Satya P. Singh

This chapter mainly focused on the recent trends in the antenna design techniques for next-generation wireless communication systems. Ultra-wideband antenna and multi-input-multi-output antennas are very useful to achieve higher data rates. An antenna is a transducer that changes guided electromagnetic energy in a transmission line to radiated electromagnetic energy in free space. Antennas may also be observed as an impedance transformer, coupling among an input or line impedance, and the impedance of free space. The looming widespread commercial deployment of ultra-wideband (UWB) systems has flashed new interest in the subject of ultra-wideband antennas. The power levels approved by the FCC mean that every dB counts in a UWB system as much as or possibly even more so than in a standard narrowband system. Thus, in effect, UWB antenna is a precarious part of an overall UWB system design. Basic principles for ultra-wide-band (UWB) antenna design and radiation are presented and discussed in this chapter.


2016 ◽  
Vol 78 (6-7) ◽  
Author(s):  
Nur Shaheera Alia Sadick ◽  
Ali Mohamad Zoinol Abidin Abd Aziz ◽  
Badrul Hisham Ahmad ◽  
Mohd Azlishah Othman ◽  
Hamzah Asyrani Sulaiman

Tapered finline or slotline array has used in Vivaldi antenna design to produce Ultra-wideband (UWB). This paper focuses to design and analysis the structural of tapered finline in order to achieved wideband in rectangular waveguide power combiner at frequency 0.5 GHz to 6 GHz. There are three main parameters are studying in this paper which are of length of radiation region exponential coefficient at curves of radiation and exponential coefficient at curves of directivity. The design of tapered finline in power combiner is simulated using CST Microwave Studio Software. The simulation process is based on the input return loss at port 1 (S11), input return loss at port 2 (S22), isolation (S21) and insertion loss (S12). By studying the effect of the parameter on the design structure, it can be ensure that the tapered finline structures are suitable in wideband design.


Sign in / Sign up

Export Citation Format

Share Document