scholarly journals Research Progress of Superhydrophobic Polymer Composite Coatings for os Magnesium Alloys

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Wensheng Fu ◽  
Yufang Luo ◽  
Jingjin Tan ◽  
Bohan Jiang

Abstract: Magnesium (Mg) alloy is the lightest metal material found because of its excellent physical and mechanical properties, specific strength, biocompatibility and biomechanical compatibility, therefore, it has very promising development prospects in aerospace, automobile manufacturing, and biodegradable materials. However, due to the relatively chemical properties of magnesium alloys, poor corrosion resistance, fast degradation rate, and poor wear resistance, they have been greatly restricted in practical applications. Therefore, anti-corrosion measures of magnesium alloys are particularly important. The manufacture of hydrophobic surfaces is a very effective method of anti-corrosion. The surface of super-hydrophobic polymer composites (i.e., thin coatings) is constructed on the surface of magnesium alloy materials to enhance their corrosion resistance and wear resistance, and the effect of its antiseptic measures is very impressive.

2011 ◽  
Vol 314-316 ◽  
pp. 181-186
Author(s):  
Xue Song Li ◽  
Li Min Wang ◽  
You Yang ◽  
Yue Yang ◽  
Hua Wu

Ni–SiC nanocomposite coatings with reinforcing SiC nano-particulates were prepared by electrodeposition on MB8 wrought magnesium alloys. The microstructure, chemical compositions, hardness, corrosion resistance, and wear resistance of resulting composites were investigated respectively. This article details the state of the art in coating technologies, applied to magnesium based substrates for improved corrosion and wear resistance.The experimental results show that, uniform and compact coatings with good corrosion resistance can be obtained on MB8 wrought magnesium alloys. The wear resistance of the coatings were observed to be superior to hard chromium coatings.


2020 ◽  
Vol 59 (1) ◽  
pp. 340-351
Author(s):  
Lin Yinghua ◽  
Ping Xuelong ◽  
Kuang Jiacai ◽  
Deng Yingjun

AbstractNi-based alloy coatings prepared by laser cladding has high bonding strength, excellent wear resistance and corrosion resistance. The mechanical properties of coatings can be further improved by changing the composition of alloy powders. This paper reviewed the improved microstructure and mechanical properties of Ni-based composite coatings by hard particles, single element and rare earth elements. The problems that need to be solved for the particle-reinforced nickel-based alloy coatings are pointed out. The prospects of the research are also discussed.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1078-1082 ◽  
Author(s):  
Yang Yang Lv ◽  
Ling Feng Zhang

Magnesium alloy as a green material in the 21st century, because of its excellent physical and mechanical properties of metallic materials as an ideal in the automotive industry, electronic industry and aviation, aerospace and other industries[1]. However, poor corrosion resistance of magnesium alloys become an important issue hinder application of magnesium alloys[2]. So magnesium alloy corrosion problems and the current status of research paper reviews several magnesium alloy protection methods at home and abroad, and also highlighted with our latest laser shock (LSP) study of AZ91 magnesium alloy at high strain rates of corrosion resistance results.


2017 ◽  
Vol 62 (4) ◽  
pp. 2421-2424 ◽  
Author(s):  
N. Gidikova ◽  
M. Sulowski ◽  
V. Petkov ◽  
R. Valov ◽  
G. Cempura

AbstractChrome plating is used to improve the properties of metal surfaces like hardness, corrosion resistance and wear resistance in machine building. To further improve these properties, an electrodeposited chromium coating on steel, modified with nanodiamond particles is proposed. The nanodiamond particles (average size 4 nm measured by TEM) are produced by detonation synthesis (NDDS). The composite coating (Cr+NDDS) has an increased thickness, about two times greater microhardness and finer micro-structure compared to that of unmodified chromium coating obtained under the same galvanization conditions. In the microstructure of specimen obtained from chrome electrolyte with concentration of NDDS 25 g/l or more, “minisections” with chromium shell were found. They were identified by metallographic microscope and X-ray analyser on etched section of chromium plated sample. The object of further research is the dependence of the presence of NDDS in the composite coating from the nanodiamond particles concentration in the chroming electrolyte.


2016 ◽  
Vol 23 (01) ◽  
pp. 1550082 ◽  
Author(s):  
PRASANNA GADHARI ◽  
PRASANTA SAHOO

The present study investigates the effect of titania particles on the micro-hardness, wear resistance, corrosion resistance and friction of electroless Ni–P–TiO2 composite coatings deposited on mild steel substrates at different annealing temperatures. The experimental results confirmed that the amount of TiO2 particles incorporated in the coatings increases with increase in the concentration of particles in the electroless bath. In presence of TiO2 particles, hardness, wear resistance and corrosion resistance of the coating improve significantly. At higher annealing temperature, wear resistance increases due to formation of hard Ni3P phase and incorporation of titania particles in the coated layer. Charge transfer resistance and corrosion current density of the coatings reduce with an increase in TiO2 particles, whereas corrosion potential increases. Microstructure changes and composition of the composite coating due to heat treatment are studied with the help of scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXA) and X-ray diffraction (XRD) analysis.


2020 ◽  
Vol 176 ◽  
pp. 108939
Author(s):  
Yufei Tang ◽  
Lixia Zhu ◽  
Ping Zhang ◽  
Kang Zhao ◽  
Zixiang Wu

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 616
Author(s):  
Zhaoyang Song ◽  
Hongwen Zhang ◽  
Xiuqing Fu ◽  
Jinran Lin ◽  
Moqi Shen ◽  
...  

The objective of this study was to improve the surface properties, hardness, wear resistance and electrochemical corrosion resistance of #45 steel. To this end, Ni–P–ZrO2–CeO2 composite coatings were prepared on the surface of #45 steel using the jet-electrodeposition technique by varying the current density from 20 to 60 A/dm2. The effect of current density on the performance of the composite coatings was evaluated. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) were applied to explore the surface topography, elemental composition, hardness and electrochemical corrosion resistance of the composite coatings. The results showed that with the increase in the current density, the hardness, wear resistance, and electrochemical corrosion resistance tends to increase first and then decrease. At a current density of 40 A/dm2, the hardness reached a maximum of 688.9 HV0.1, the corrosion current reached a minimum of 8.2501 × 10−5 A·cm−2, and the corrosion potential reached a maximum of −0.45957 V. At these values, the performance of the composite coatings was optimal.


2011 ◽  
Vol 221 ◽  
pp. 364-368 ◽  
Author(s):  
Ping Fu ◽  
Cheng Zhao ◽  
Hua Tian

By using self-made asymmetric AC - DC power supply and adding SiC in ferrous chloride bath, the high performance Fe-SiC iron-based composite coatings were prepared by electrodeposition method. The effect of Phase, composition and SiC particle content on the surface morphology, structure, hardness, wear resistance and corrosion resistance of Fe-SiC composite coatings were studied. The process parameters of Fe-SiC composite plating were optimized. The results showed that the micro-cracks in composite coatings would reduced and the hardness, wear resistance and corrosion resistance will increased by adding SiC particles under the condition of optimum process.


2009 ◽  
Vol 79-82 ◽  
pp. 795-798 ◽  
Author(s):  
Hong Ye ◽  
X.B. Zhang ◽  
Z.F. Xue ◽  
Y.H. Fan ◽  
Ke Chen

The composite coatings of self-flux alloy matrix reinforced by WC-12%Co were produced on the surface of 45 steel using laser cladding technology. The effects of CeO2 to macro-morphology, microstructure, hardness, wear resistance and corrosion resistance of cladding layer were investigated. The results show that rare earths oxide (CeO2) added laser cladding coating has distribution, dimension phases and less deficiency. CeO2 could promote liquating process of WC, increasing the quantity and distribute uniformity of intermetallic compounds in laser cladding layer. Because of dispersion precipitation and fine-crystal strengthen effect, laser cladding layer with CeO2 has higher microhardness, wearing resistance and better corrosion resistance properties.


2014 ◽  
Vol 988 ◽  
pp. 117-120
Author(s):  
Ya Min Li ◽  
Xing Zhang ◽  
Amin Wang ◽  
Hong Jun Liu

Ni-P-SiC composite coatings on the surface of ZL102 aluminum alloy were prepared by direct electroless plating. The structure and morphology of the coatings after heat treatment at 400 °C for 1 hour were analyzed by XRD and SEM. The bonding strength, hardness, corrosion resistance and wear resistance of the coatings were tested. The results show that the coatings structure is crystalline and the main crystal phase is Ni3P. The SiC particles are evenly distributed in the coatings. The coatings have uniform thickness, high bonding strength and high micro hardness (up to 1395.28 HV.2). It is also shown that the substrate corrosion resistance and wear resistance can be considerably improved after electroless plating.


Sign in / Sign up

Export Citation Format

Share Document