Journal of Metallic Material Research
Latest Publications


TOTAL DOCUMENTS

38
(FIVE YEARS 33)

H-INDEX

1
(FIVE YEARS 1)

Published By Bilingual Publishing Co.

2630-5135

2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Guocheng Zhu ◽  
Junming Chen

Natural organic matter affect water environmental security and posed a potential threat to human health, and thus it has long been considered as a key index to evaluate water treatment performance. Dissolved organic nitrogen is one of the NOM, which produces some disinfection byproducts having more toxic than those carbon-based materials. Coagulation is a key unit of drinking water purification and has received wide attention. However, conventional flocculation technology on removal of DON is so poor that we have to seek more effective improving measurement. The combined use of conventional flocculant and organic polymer can improve treatment efficiency to a certain extent, and enhanced coagulation can also improve the DON removal rate, but their DON removal performance is still not dreamful. At present, there is a lack of systematic research on flocculation to remove DON. Although some achievements have been made, there is still a big gap between the preparation technology of flocculant and the goal of efficient removal of DON in water.For treatment of secondary effluent of industrial wastewater, some studies show that the use of Fe3O4 mainly has the effect of accelerating separation, but the adsorption effect is not good. However, with the synergistic flocculation of amino functionalized Fe3O4 it has a good effect on removing water protein, polysaccharide and humic acid, which can meet the water quality discharge standard and reduce the dosage of flocculant. The above results show that functional nanoparticle materials are of great significance to improve the adsorption and flocculation performance. Therefore, the functional modification of magnetic nanoparticles plays an important role.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Amit Saraswat ◽  
Dipak Kumar

The work done in this work deals with the efficacy of cutting parameters on surface of EN-8 alloy steel. For knowing the optimal effects of cutting parameters response surface methodology was practiced subjected to central composite design matrix. The motive was to introduce an interaction among input parameters, i.e., cutting speed, feed and depth of cut and output parameter, surface roughness. For this, second order response surface model was modeled. The foreseen values obtained were found to be fairly close to observed values, showed that the model could be practiced to forecast the surface roughness on EN-8 within the range of parameter studied. Contours and 3-D plots are generated to forecast the value of surface roughness. It was revealed that surface roughness decreases with increases in cutting speed and it increases with feed. However, there were found negligible or almost no implication of depth of cut on surface roughness whereas feed rate affected the surface roughness most. For lower surface roughness, the optimum values of each one were also evaluated.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Shirong Zhu ◽  
Lu Liu ◽  
Qiaoli Lin

As an emerging alloy material, high-entropy alloy has potential applications that distinguish it from traditional alloys due to its special physicochemical properties. In this work, a low melting point GaInSnBiZn high-entropy alloy was designed based on Miedema model, and its surface tension was measured by the continuous pendant-drop method. The results show that the intrinsic surface tension of GaInSnBiZn high-entropy alloy at 80 °C is 545±5 mN/m, and the surface tension of the liquid alloy is significantly reduced by the formation of surface oxide film. The surface tension of GaInSnBiZn high-entropy alloy was analyzed by using theoretical models (Guggenheim model, GSM (general solution) model and Butler model), and the thermodynamic characteristics of the surface tension formation were further verified by combining with thermodynamic calculations, among which the calculated results of Butler model were in good agreement with the experimental data. Meanwhile, it is found that the surface concentration of Bi in the alloy is much larger than the nominal concentration of its bulk phase, which contributes the most to the surface tension of the alloy, however, it contributes the least to the entropy of the alloy formation in combination with the Butler model.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ekemini Ituen ◽  
Chukwudurom Dim ◽  
Ekerete BoEKOM

Silver nanofluid was prepared by bio-reduction reaction between orange peels extracts (OPE) and silver nitrate and characterized by spectroscopic and microscopic techniques. Colloidal nanoparticles of sizes between 40 – 50 nm and spherical shape were obtained. The nanofluid was applied as anticorrosion additive to inhibit corrosion of X80 steel in simulated oilfield scale dissolver solution (1.0 M HCl) at various temperatures. The nanofluid (OPE-AgNPs) was 98.9 % and 84.3 % efficient at 30 ºC and 60 oC respectively as determined by weight loss measurement. In comparison with OPE, OPE-AgNPs shows better corrosion inhibition and higher resistance to thermal degradation. Some kinetic and thermodynamic models were used to characterize the inhibition process. OPE-AgNPs could be optimized and used as alternative anticorrosion additive for scale dissolution liquor in the industry.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
A. D. Sharma ◽  
A. K. Sharma ◽  
N. Thakur

Micro-sized copper powder (99.95%; O≤0.3) has been shock-processed with explosives of high detonation velocities of the order of 7.5km/s to observe the structural and microstructural sub-strengthening. Axisymmetric shock-consolidation technique has been used to obtain conglomerates of granular Cu. The technique involves the cylindrical compaction system wherein the explosive-charge is in direct proximity with the powder whereas the other uses indirect shock pressure with die-plunger geometry. Numeric simulations have been performed on with Eulerian code dynamics. The simulated results show a good agreement with the experimental observation of detonation parameters like detonation velocity, pressure, particle velocity and shock pressure in the reactive media. A pin contactor method has been utilized to calculate the detonation pressure experimentally. Wide angled x-ray diffraction studies reveal that the crystalline structure (FCC) of the shocked specimen matches with the un-shocked specimen. Field emissive scanning electron microscopic examination of the compacted specimens show a good sub-structural strengthening and complement the theoretical considerations. Laser diffraction based particle size analyzer also points towards the reduced particle size of the shock-processed specimen under high detonation velocities. Micro-hardness tests conducted under variable loads of 0.1kg, 0.05kg and 0.025kg force with diamond indenter optical micrographs indicate a high order of micro-hardness of the order of 159Hv. Nitrogen pycnometry used for the density measurement of the compacts shows that a compacted density of the order of 99.3% theoretical mean density has been achieved.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kaibin Xie ◽  
Yujie Ge ◽  
Qiaoli Lin

The effect of microcosmic morphologies of textured Cu surface by nanosecond laser on the inert wetting and reactive wetting, i.e., ethylene glycol/copper and tin/copper wetting systems, was studied by using modified sessile drop methods. To create different surface roughness, the microcosmic morphologies with different spacing of grooves were constructed by nanosecond laser. The results showed that the inert wetting (ethylene glycol/copper) was consistent with Wenzel model, while the reactive wetting results deviated from the model. In Sn/Cu reactive wetting system, the interfacial evolution in the early stage and the pinning of triple line by the precipitated h-Cu6Sn5 caused the rougher surface and the worse final wettability. When the scale of artificial roughness exceeded the roughness that was caused by interfacial reaction after reaching the quasi-equilibrium state at interface, the final wettability could be improved.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ngiongboung Nguiamba ◽  
Celestine Asobo Yanu ◽  
Placide Désiré Belibi Belibi ◽  
Joseph Marie Sieliechi ◽  
Martin Benoît Ngassoum

This paper deals with the formulation of ceramic filters having the porosity adapted to domestic potable water treatment. The filters were made from clays and rice husk obtained from the Far North region of Cameroon (Logone Valley). Nine formulations were investigated to choose those that might have the porosity standing between 35 and 50% (the ideal porosity adapted for water treatment) [1]. The nine formulations investigated were as follow: clay:rice husk mixture weight ratio 0.7:0.3; 0.8:0.2 and 0.9:0.1 with the particle size of 100:100 microns. The sintering temperatures of 900°C, 950°C and 1000°C were applied for each of the mixtures. The results showed that only filters with weight ratio 0.7:0.3 sintered at 900°C, 950°C and 1000°C had porosity between 35 and 50% with values of 39.41±0.96; 40.15±1.59; 40.14±1.31 respectively. Mechanical strength, permeability and iron leaching behavior were investigated for these three formulations. The formulation 0.7:0.3 with sintering temperature of 1000°C had the higher permeability and was the more stable for iron leaching so it is the more adapted for water treatment in terms of flow rate and iron leaching behavior, pore size distribution showed that these filters were macroporous and designed for microfiltration with average pore diameter of 0.46µm.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alireza Heidari

The current study is aimed to use Polysorbate 80 as surfactant for investigating the effectiveness of permeate TBA on the Polyether Ether Ketone (PEEK) anti–cancer protective membrane and the effect of loading DNA/RNA–CdO sandwiched complex on hydrophilicity and anti–cancer properties. The results showed decreasing surface pore size from 227 to 176 and increasing porosity from 101 to 111 with loading DNA/RNA–CdO sandwiched complex, and the permeate of anti–cancer protective membrane increased from 80 to 220 (L/m2.hr.bar) with loading DNA/RNA–CdO sandwiched complex. In addition, the results of current study showed that by increasing DNA/RNA–CdO sandwiched complex nanohybrides to 0.09Wt% to polymer matrix contact angle decreased from 84.4 to 23 degree. Moreover, the results of current study showed that by increasing DNA/RNA–CdO sandwiched complex nanohybrides to 0.09Wt% to hydrophilicity of anti–cancer protective membranes increased. All of the above results mentioned fouling of hybride anti–cancer protective membrane decreased than usual form. Therefore, hybride anti–cancer protective membranes of (DNA/RNA–CdO sandwiched complex) with the help of Polysorbate 80 as surfactant may be considered as a suitable anti�?cancer protective membrane for treatment of TBA.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nisreen Faraj ◽  
Kareima A. Abdelghani ◽  
A.A. Idress ◽  
Dalal. M. Ibrahim

The chemical technique was used to investigate the inhibition and adsorption properties of L-proline for steel corrosion (weight loss method). As the concentration of L-proline increased, the inhibition efficiency increased, but decreased as the temperature increased, according to the findings. The inhibitor’s adsorption to the steel surface has been shown to be random, involving both electrostatic and chemisorptions. The Temkin adsorption isotherm governs the adsorption of L-proline to the steel surface. Thermodynamic parameters have been determined in some cases.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Rajesh Kumar Singh ◽  
Jay Prakash ◽  
Dharmendar Kumar

Chloride ions interact with aluminium in marine atmosphere to form corrosion cell. Due to this corrosion reaction occurs on their surface, aluminium is oxidized into Al3+. The corrosion reaction accelerates deterioration in metal and it produces galvanic, pitting, stress, crevice, intergranular corrosion. Chloride ions decrease internal and external strength of aluminium metal. It is a very important metal so used in different appliances for e.g. road, water, air transports, housing, railways and other fields. Nanocoating and electrospray techniques used to check the corrosion of aluminium metal. For nanocoating and electrospray materials applied tetrahydro-dibenzo[a,d][7]annulene-5,11-dihydrazone and MgO. Both materials formed composite barrier and developed a passive surface for Cl- ions. This barrier reduced the corrosion rate of aluminium. Nozzle spray and chemical vapour deposition technique used for coating process. The corrosion rate of metal was determined by gravimetric method. Corrosion potential and current density were calculated by potentiostat. The composite barrier formation was confirmed by activation energy, heat of adsorption, free energy, enthalpy and entropy. These thermal parameters were obtained by Arrhenius equation, Langmuir isotherm and Transition state equation. The adsorption of tetrahydro-dibenzo[a,d][7]annulene-5,11-dihydrazone and MgO electrospray on aluminium surface was depicted by Langmuir, Frundlich and Temkin isotherm.  The results of surface coverage area and coating efficiency were noticed that both materials were mitigated the corrosion rate of aluminium in chloride ions environment.


Sign in / Sign up

Export Citation Format

Share Document