scholarly journals Effect of Land Cultivation on Soil Nutrient Sedimentation in Water at Southern China

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Jianshuang Gao ◽  
Yuhe Zhang ◽  
Zhuangzhuang Qian ◽  
Shunyao Zhuang

Soil erosion associated with land cultivation exerts a great impact on ecological environment. Such an impact is specific of land, crop, tillage, management and so on. This study aimed to investigate the effects of crop cultivation on water quality by comparing nutrient distribution in the sediment at Southern China. Two sedimentation sites adjacent to the uncultivated (S1) and cultivated upland (S2) were selected and samples were analyzed. Results showed that soil pH decreased with the increasing depth above 20 cm and then kept relatively stable of the both sediments. Soil organic matter, nitrogen and phosphorus contents decreased with the increasing depth. There was no significant difference between two sediments in organic matter and nitrogen contents, but the total phosphorus and extractable phosphorus contents in S2 were much higher than that in S1. The data indicated that soil eroded from S2 could possess much high potential to deteriorate water quality. Nutrient sedimentation can reflect the history of soil erosion and provide useful information for sustainable soil management and water conservation through improving cultivation and tillage measures.

2004 ◽  
Vol 55 (6) ◽  
pp. 581 ◽  
Author(s):  
L. C. Radke ◽  
I. P. Prosser ◽  
M. Robb ◽  
B. Brooke ◽  
D. Fredericks ◽  
...  

We examine surface sediment and water column total nutrient and chlorophyll a concentrations for 12 estuaries with average water depths <4 m, and calculated sediment loads ranging from 0.2 to 10.8 kg m−2 year−1. Sediment total nitrogen, phosphorus and organic carbon concentrations vary inversely with sediment loads due to: (i) the influx of more mineral-rich sediment into the estuaries; and (ii) increasing sediment sulfidation. Sediment total organic carbon (TOC) : total sulfur (TS) and TS : Fe(II) ratios correlated to sediment loads because enhanced sedimentation increases burial, hence the importance of sulfate reduction in organic matter degradation. Curvilinear relationships were found between a weathering index and organic matter δ13C in sediment, and sediment load. The rising phase of the curve (increasing weathering, lighter isotopic values) at low to intermediate loads relates to soil erosion, whereas regolith or bedrock erosion probably explains the declining phase of the curve (decreasing weathering, heavier isotopic values) at higher sediment loads. The pattern of change for water column total nutrients (nitrogen and phosphorus) with sediment loads is similar to that of the weathering index. Most water quality problems occur in association with soil erosion, and at sediment loads that are intermediate for the estuaries studied. Limited evidence is presented that flushing can moderate the impact of sediment loads upon the estuaries.


2019 ◽  
Vol 136 ◽  
pp. 07028
Author(s):  
Qian Jing ◽  
Zhang Liping

Soil nutrient loss not only reduces soil productivity, but also causes non-point source pollution and accelerates the eutrophication of surface water. In order to understand the effects of slope lengths (2m, 4m), vegetation coverage ratios (15%, 30%, 45%, 60%, 90%) on the mechanisms of soil nutrient loss, the research studied the simulated rainfall experiment with the slope gradient of 20°, the rainfall intensity of 2.0 mm/min and the time of producing runoff for about 30 min. The experimental results showed that the runoff coefficient is mainly affected by vegetation coverage ratio.


2017 ◽  
Vol 9 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Jana Konečná ◽  
Petr Karásek ◽  
Petr Fučík ◽  
Jana Podhrázská ◽  
Michal Pochop ◽  
...  

Abstract Reduction of nitrogen and phosphorus inputs into surface waters from nonpoint agricultural sources requires targeted application of differentiated measures. In the study focused on soil and water conservation in the Jihlava river basin upstream of the Dalešice reservoir, we identified areas at potential risk of soil erosion, elevated infiltration and nutrient leaching, tile-drained areas and vulnerable riparian zones of water bodies. We then designed a system of complex protective measures for this river basin in more variants, and their effectiveness was estimated using simple empirical model calculations and research findings. Application of the measures defined by optimal variant 3 in the studied watershed could lead to reduction of the soil erosion effects on the surface water quality by 26.5 %, with simultaneous reduction of the amount of washed out total nitrogen by 22.8 %. The results of our study constitute a partial component of the Qualitative Model of the Jihlava River Basin and they were provided for use to the Vysočina Region authorities and the State Land Office.


2016 ◽  
Vol 5 ◽  
pp. 15 ◽  
Author(s):  
Daniel Buckles ◽  
Ignacio Ponce ◽  
Gustavo Sain ◽  
Gilmer Medina

The soil, nutrient and water conservation is the main problem faced by farmers and investigators under the corn crop-based systems in Central America and Mexico. Several farmers from Honduras have come up with an efficient technology for the corn planted on hills, in which the bean manure is planted in rotation with corn during the dry season. The results from the conducted survey, at the Departamento de Atlantida in Honduras, indicate that 66 % of the farmers grow most of the corn through the protective mat produced by the beans during the rainy season. Among the advantages of this rotation, compared to the traditional burned and cleared land, are the higher yields with les ser dependency of external imputs, shorter rest periods, lower land preparation costs, less soil erosion and lower risk of drought damages. The problems linked to the diffusion ofthe system include the risk ofland slides and a higher plague's incidence (rats) on the corn planted through the manure mat. Usually, the amount of land available in the regionalland markets is the determining factor on the diffusion of this system, and not the size of the farm nor the form of land tenancy.


2021 ◽  
pp. 969-976
Author(s):  
Lirong He ◽  
Yuhu Luo

The soil nutrient characteristics under three vegetation types of arbor ( I ), shrub ( II ) and herb ( III ) were studied by mathematical statistics method combined with field investigation and indoor detection analysis. The change characteristics of soil nutrients under different land use patterns were discussed. The results showed that the average contents of soil organic matter, total nitrogen, available phosphorus and available potassium were 21.30 and 0.65 g/kg, 3.67 and 67.61 mg/kg, respectively. Compared with grassland, woodland has better effect on fertilizer conservation in the Loess Plateau. In the process of soil nutrient improvement, the nutrient indexes such as organic matter, total nitrogen, available phosphorus and available potassium increased synchronously, and the soil alkaline environment that was not conducive to plant growth was also gradually improved. In the correlation between soil nutrients, available phosphorus and available potassium have good relative independence. In the future, organic fertilizer should be applied in this area, and nitrogen and phosphorus fertilizers should be supplemented to improve soil organic matter, nitrogen and phosphorus content, and to ensure soil nutrient balance by optimizing fertilization methods. In addition, in the case of uneven distribution of soil nutrients in the soil profile, it is recommended to take appropriate soil ploughing and reasonable human management measures to improve soil nutrient status, achieve high-quality sustainable development of soil, and promote the positive succession of vegetation communities. Bangladesh J. Bot. 50(3): 969-976, 2021 (September) Special


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Marianne Ruidisch ◽  
Sebastian Arnhold ◽  
Bernd Huwe ◽  
Christina Bogner

Non-sustainable agricultural practices can alter the quality of soil and water. A sustainable soil management requires detailed understanding of how tillage affects soil quality, erosion, and leaching processes. Agricultural soils in the Haean catchment (South Korea) are susceptible to erosion by water during the monsoon. For years, erosion-induced losses have been compensated by spreading allochthonous sandy material on the fields. These anthropogenically modified soils are used for vegetable production, and crops are cultivated in ridges using plastic mulches. To evaluate whether the current practice of ridge cultivation is sustainable with regard to soil quality and soil and water conservation, we (i) analysed soil properties of topsoils and (ii) carried out dye tracer experiments. Our results show that the sandy topsoils have a very low soil organic matter content and a poor structure and lack soil burrowers. The artificial layering induced by spreading sandy material supported lateral downhill water flow. Ridge tillage and plastic mulching strongly increased surface runoff and soil erosion. We conclude that for this region a comprehensive management plan, which aims at long-term sustainable agriculture by protecting topsoils, increasing soil organic matter, and minimizing runoff and soil erosion, is mandatory for the future.


2020 ◽  
Vol 12 (5) ◽  
pp. 2126
Author(s):  
Lingxia Wang ◽  
Zhongwu Li ◽  
Danyang Wang ◽  
Xiaoqian Hu ◽  
Ke Ning

Soil and water conservation partitioning (SWCP) considers complex environmental statutes and development demands and serves as a scientific basis for conducting soil erosion management and practice. However, few studies have researched partitioning in small watersheds (< 50 km2), and guidelines for enabling region-specific measures are lacking. In this study, the Xiaoyang watershed located in the red soil region of southern China was selected as a representative small watershed in which to conduct partitioning. The pressure–state–response (PSR) model was used as a framework for establishing an indicator system that included soil erosion sensitivity, the soil erosion condition, and ecosystem services. With three soil and water conservation variables as the input layer, a one-dimensional self-organizing map was applied to identify clusters in the small watershed. The silhouette width was evaluated to determine the optimal number of regions. Based on the associated results, the Xiaoyang watershed was divided into five regions accounting for 82%, 9%, 8%, 2%, and 1% of the total area, respectively. This study provides a framework on which region-specific soil erosion measures can be planned, and it also provides a partitioning method that can be employed in other areas.


2013 ◽  
Vol 6 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Donald L. Hagan ◽  
Shibu Jose ◽  
Kimberly Bohn ◽  
Francisco Escobedo

AbstractWe assessed pre- and posteradication nitrogen and phosphorus dynamics in longleaf pine sandhill stands severely affected by cogongrass. Across a 7-yr posteradication (glyphosate + imazapyr) “recovery chronosequence,” which included untreated cogongrass, uninvaded reference, and treated plots, we analyzed soils for total N, potentially available P (Mehlich-1 [M1]), pH, and organic matter content. We also used resin bags to assess fluxes of plant available N and P in the soil solution. Additionally, we used litterbags to monitor the decomposition and nutrient mineralization patterns of dead rhizome and foliage tissue. Our results indicate similar total N and M1-P contents in both cogongrass-invaded and uninvaded reference plots, with levels of M1-P being lower than in cogongrass plots for 5 yr after eradication. Soil organic matter did not differ between treatments. Resin bag analyses suggest that cogongrass invasion did not affect soil nitrate availability, although a pulse of NO2+ NO3occurred in the first 3 yr after eradication. No such trends were observed for ammonium. Resin-adsorbed PO4was lowest 3 yr after eradication, and pH was highest 5 yr after eradication. Our litterbag study showed that approximately 55% of foliar biomass and 23% of rhizome tissue biomass remained 18 mo after herbicide treatment. Substantial N immobilization was observed in rhizomes for the first 12 mo, with slow mineralization occurring thereafter. Rapid P mineralization occurred, with 15.4 and 20.5% of initial P remaining after 18 mo in rhizomes and foliage, respectively. Overall, our findings indicate that cogongrass invasion has little to no effect on soil nutrient cycling processes, although some significant—but ephemeral—alterations develop after eradication.


2021 ◽  
Vol 5 (2) ◽  
pp. 99-103
Author(s):  
Dhruba Baral ◽  
Anup Paudel ◽  
Himal Acharya ◽  
Madhav Prasad Neupane

This study was conducted to assess the fertility status of different altitude of apple orchard and their effect upon soil nutrients and to study the relationship between different altitude and their availability. Seven different orchards located in 2800, 2700 2600, 2500, 2400, 2300 and 2200 at Apple Zone, Raskot, Kalikot were selected as treatments. They were replicated three times in Randomized Complete Block Design. Composite soil samples were collected in each study site from 0-3 ft soil depth in ‘W’ pattern from each plot. Analyses of soil samples were done in regional soil testing laboratory, Surkhet for chemical properties. There was a significant effect (p<0.05) of altitude on soil macronutrients except available potassium level. Maximum amounts of soil organic matter, acidic and soil rich in nitrogen and phosphorus were found in 2800 masl whereas more basic soil , poor soil organic matter and soil poor in nitrogen and phosphorus were found in 2200 masl. Result showed that in altitude of 2200 masl has poor soil nutrients compared to apple orchards in higher altitude. Kalikot is the top producer of apple in Nepal. This assessment will helps apple growers for adopting better nutrient management plan in their orchards according to the altitude in the district. Further, it is recommended to conduct soil nutrient assessments for all other apple growing regions in the country.


Sign in / Sign up

Export Citation Format

Share Document