scholarly journals Uso y difusión del frijol de abono (Mucuna deeringiana) en las laderas del litoral Atlántico de Honduras.

2016 ◽  
Vol 5 ◽  
pp. 15 ◽  
Author(s):  
Daniel Buckles ◽  
Ignacio Ponce ◽  
Gustavo Sain ◽  
Gilmer Medina

The soil, nutrient and water conservation is the main problem faced by farmers and investigators under the corn crop-based systems in Central America and Mexico. Several farmers from Honduras have come up with an efficient technology for the corn planted on hills, in which the bean manure is planted in rotation with corn during the dry season. The results from the conducted survey, at the Departamento de Atlantida in Honduras, indicate that 66 % of the farmers grow most of the corn through the protective mat produced by the beans during the rainy season. Among the advantages of this rotation, compared to the traditional burned and cleared land, are the higher yields with les ser dependency of external imputs, shorter rest periods, lower land preparation costs, less soil erosion and lower risk of drought damages. The problems linked to the diffusion ofthe system include the risk ofland slides and a higher plague's incidence (rats) on the corn planted through the manure mat. Usually, the amount of land available in the regionalland markets is the determining factor on the diffusion of this system, and not the size of the farm nor the form of land tenancy.

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Jianshuang Gao ◽  
Yuhe Zhang ◽  
Zhuangzhuang Qian ◽  
Shunyao Zhuang

Soil erosion associated with land cultivation exerts a great impact on ecological environment. Such an impact is specific of land, crop, tillage, management and so on. This study aimed to investigate the effects of crop cultivation on water quality by comparing nutrient distribution in the sediment at Southern China. Two sedimentation sites adjacent to the uncultivated (S1) and cultivated upland (S2) were selected and samples were analyzed. Results showed that soil pH decreased with the increasing depth above 20 cm and then kept relatively stable of the both sediments. Soil organic matter, nitrogen and phosphorus contents decreased with the increasing depth. There was no significant difference between two sediments in organic matter and nitrogen contents, but the total phosphorus and extractable phosphorus contents in S2 were much higher than that in S1. The data indicated that soil eroded from S2 could possess much high potential to deteriorate water quality. Nutrient sedimentation can reflect the history of soil erosion and provide useful information for sustainable soil management and water conservation through improving cultivation and tillage measures.


2020 ◽  
Author(s):  
Zhilin Huang ◽  
Liang Ma ◽  
Tian Wang ◽  
Lixiong Zeng

<p>As the population has grown and human activities have intensified (predominantly agriculture) in the Three Gorges Reservoir area (TGRA) since the 1980s, the substantial areas of arable land on the steep slopes are the main living and farming space for people. Chinese government implemented the Conversion of Cropland to Forest Program from 2001, because of increasing erosion hazard by excessive cultivation and over-felling. To investigate the efficiency of a range of widely recommended program for soil conservation, long-term monitoring in the Heigou watershed was initiated from 2009. Surface runoff, sediment and nutrient transport were measured at watershed. Monitoring has been done to collect sufficient baseline data about soil erosion rate, runoff rate and quantity of soil nutrients (the sum of nutrients in sediment and runoff) in the watershed. The results showed that the soil erosion modulus varied from 138.26 to 355.28 t·km<sup>-2</sup>·a<sup>-1</sup> among between 2016 and 2019, while average soil erosion modulus was 265.8 t·km<sup>-2</sup>·a<sup>-1</sup>, lower than the allowable soil loss in this area. The average runoff coefficient, average loss load of total nitrogen and total phosphorus were 53.9%, 11.24 t·km<sup>-2</sup>·a<sup>-1</sup> and 0.19 t·km<sup>-2</sup>·a<sup>-1</sup>. Runoff contributed more than 90% of nitrogen loss, and sediment contributed 82.7% of total phosphorus loss. The soil erosion modulus decreased significantly from 2054.06 t·km<sup>-2</sup>·a<sup>-1</sup> to 265.8 t·km<sup>-2</sup>·a<sup>-1</sup> by returning farmland to forest, which was a severe erosion before. Loss load of soil nutrient diversion was high, and TN was excessive for surface water. The ratio of nitrogen to phosphorus would encourage algae growth and eutrophication in TGRA.</p>


Author(s):  
Hui Wei ◽  
Wenwu Zhao ◽  
Han Wang

Large-scale vegetation restoration greatly changed the soil erosion environment in the Loess Plateau since the implementation of the “Grain for Green Project” (GGP) in 1999. Evaluating the effects of vegetation restoration on soil erosion is significant to local soil and water conservation and vegetation construction. Taking the Ansai Watershed as the case area, this study calculated the soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration, using the Chinese Soil Loess Equation (CSLE), based on rainfall and soil data, remote sensing images and socio-economic data. The effect of vegetation restoration on soil erosion was evaluated by comparing the average annual soil erosion modulus under two scenarios among 16 years. The results showed: (1) vegetation restoration significantly changed the local land use, characterized by the conversion of farmland to grassland, arboreal land, and shrub land. From 2000 to 2015, the area of arboreal land, shrub land, and grassland increased from 19.46 km2, 19.43 km2, and 719.49 km2 to 99.26 km2, 75.97 km2, and 1084.24 km2; while the farmland area decreased from 547.90 km2 to 34.35 km2; (2) the average annual soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration was 114.44 t/(hm²·a) and 78.42 t/(hm²·a), respectively, with an average annual reduction of 4.81 × 106 t of soil erosion amount thanks to the vegetation restoration; (3) the dominant soil erosion intensity changed from “severe and light erosion” to “moderate and light erosion”, vegetation restoration greatly improved the soil erosion environment in the study area; (4) areas with increased erosion and decreased erosion were alternately distributed, accounting for 48% and 52% of the total land area, and mainly distributed in the northwest and southeast of the watershed, respectively. Irrational land use changes in local areas (such as the conversion of farmland and grassland into construction land, etc.) and the ineffective implementation of vegetation restoration are the main reasons leading to the existence of areas with increased erosion.


2020 ◽  
Vol 10 (10) ◽  
pp. 3647
Author(s):  
Peter Fiener ◽  
Tomáš Dostál ◽  
Josef Krása ◽  
Elmar Schmaltz ◽  
Peter Strauss ◽  
...  

In the European Union, soil erosion is identified as one of the main environmental threats, addressed with a variety of rules and regulations for soil and water conservation. The by far most often officially used tool to determine soil erosion is the Universal Soil Loss Equation (USLE) and its regional adaptions. The aim of this study is to use three different regional USLE-based approaches in three different test catchments in the Czech Republic, Germany, and Austria to determine differences in model results and compare these with the revised USLE-base European soil erosion map. The different regional model adaptations and implementation techniques result in substantial differences in test catchment specific mean erosion (up to 75% difference). Much more pronounced differences were modelled for individual fields. The comparison of the region-specific USLE approaches with the revised USLE-base European erosion map underlines the problems and limitations of harmonization procedures. The EU map limits the range of modelled erosion and overall shows a substantially lower mean erosion compared to all region-specific approaches. In general, the results indicate that even if many EU countries use USLE technology as basis for soil conservation planning, a truly consistent method does not exist, and more efforts are needed to homogenize the different methods without losing the USLE-specific knowledge developed in the different regions over the last decades.


2021 ◽  
Vol 1 (1) ◽  
pp. 021-028
Author(s):  
Mukhtar Iderawumi ABDULRAHEEM ◽  
Sulaimon Abidemi LAWAL

Many see organic agriculture as the most sustainable form of farming and as the paradigm for global food production in the future. One of the solutions to food insecurity and malnutrition in Sub-Saharan Africa is to promote local crops, encourage the use of locally source materials as amendment, improve their traditional system of production, and so diversify subsistence crop. The major reasons are the lack of knowledge and skill in land preparation and agronomic practices, weather uncertainties, pest outbreak and above all the use of fertilizer. Hence, this research will be carried out to investigate the effects of integrated application of Urea fertilizer and Goat Manure on soil Nutrient Availability and Okra performance. Field trials were conducted with four treatments replicated three times in a Randomized Complete Block Design (RCBD). The treatments were Control (no Urea, no goat manure), 8t/ha-1 goat manure + 200kg/ha-1 urea fertilizer; 8t/ha-1 goat manure + 175kg/ha-1 urea fertilizer and 8t/ha-1 goat manure + 150kg/ha-1 urea fertilizer. Treatments were applied three weeks after planting by ring method with Urea and goat manure mixed. Soil physical and chemical properties, growth and yield parameters were evaluated. Data were analyzed using Analysis of Variance (ANOVA) and Duncan Multiple Range. 8t/ha-1 goat manure + 200kg/ha-1 urea fertilizer gave the highest plant height, leaf area as well as number of leaves than other treatment. However, the fruits weight, days of 50% flowering, number of fruit, fruits diameter and fruits length were significantly increased at 8t/ha-1 goat manure + 200kg/ha-1 urea fertilizer.


2021 ◽  
Author(s):  
Anjun Lan ◽  
Zemeng Fan ◽  
Qingsong Zhao ◽  
Xuyang Bai

Abstract How to explicitly understanding the soil erosion intensity change in different geomorphological types is one of key issues in the field of soil and water conservation. According to classification criterion of soil erosion intensity of China, the spatial soil erosion data with the resolution of 10 m×10m in Guizhou Province were obtained by combing with the multi-resolution remote sensing data of ALOS, ZY-3, GF-1, Landsat and GDEMV2, and 2762 field sampling data in 2010 and 2015, respectively. a spatial analysis model of soil erosion was improved to analyze the spatiotemporal change of soil erosion intensity in karst and non karst area of Guizhou province, which involved the spatial soil erosion data and different geomorphological type data of Guizhou province. The results show that the soil erosion intensity decreased by 6468.13km 2 in Guizhou Province from 2010 to 2015. The dynamic change intensity in the high-altitude area is larger than in the low-altitude area. The soil change intensity in karst area is higher than in non karst area, especially in the high and middle elevation area in Guizhou province. Moreover, the decreasing ratio of soil erosion intensity in karst area is generally larger than in non karst area, which can be used to explain that the ecological restoration projects and water soil conservation polices carried out in karst area has a good effect, especially in western of Guizhou province from 2010 to 2015, one the other hand, the soil erosion in non karst area should also be focused by local government in the future.


2020 ◽  
Author(s):  
Qiang Dai ◽  
Jingxuan Zhu ◽  
Shuliang Zhang ◽  
Shaonan Zhu ◽  
Dawei Han ◽  
...  

Abstract. Soil erosion can cause various ecological problems, such as land degradation, soil fertility loss, and river siltation. Rainfall is the primary water-driving force for soil erosion and its potential effect on soil erosion is reflected by rainfall erosivity that relates to the raindrop kinetic energy (KE). As it is difficult to observe large-scale dynamic characteristics of raindrops, all the current rainfall erosivity models use the function based on rainfall amount to represent the raindrops KE. With the development of global atmospheric re-analysis data, numerical weather prediction (NWP) techniques become a promising way to estimate rainfall KE directly at regional and global scales with high spatial and temporal resolutions. This study proposed a novel method for large-scale and long-term rainfall erosivity investigations based on the Weather Research and Forecasting (WRF) model, avoiding errors caused by inappropriate rainfall–energy relationships and large-scale interpolation. We adopted three microphysical parameterizations schemes (Morrison, WDM6, and Thompson aerosol-aware [TAA]) to obtain raindrop size distributions, rainfall KE and rainfall erosivity, with validation by two disdrometers and 304 rain gauges around the United Kingdom. Among the three WRF schemes, TAA had the best performance compared with the disdrometers at a monthly scale. The results revealed that high rainfall erosivity occurred in the west coast area at the whole country scale during 2013–2017. The proposed methodology makes a significant contribution to improving large-scale soil erosion estimation and for better understanding microphysical rainfall–soil interactions to support the rational formulation of soil and water conservation planning.


2020 ◽  
Vol 24 (11) ◽  
pp. 5407-5422
Author(s):  
Qiang Dai ◽  
Jingxuan Zhu ◽  
Shuliang Zhang ◽  
Shaonan Zhu ◽  
Dawei Han ◽  
...  

Abstract. Soil erosion can cause various ecological problems, such as land degradation, soil fertility loss, and river siltation. Rainfall is the primary water-driven force for soil erosion, and its potential effect on soil erosion is reflected by rainfall erosivity that relates to the raindrop kinetic energy. As it is difficult to observe large-scale dynamic characteristics of raindrops, all the current rainfall erosivity models use the function based on rainfall amount to represent the raindrops' kinetic energy. With the development of global atmospheric re-analysis data, numerical weather prediction techniques become a promising way to estimate rainfall kinetic energy directly at regional and global scales with high spatial and temporal resolutions. This study proposed a novel method for large-scale and long-term rainfall erosivity investigations based on the Weather Research and Forecasting (WRF) model, avoiding errors caused by inappropriate rainfall–energy relationships and large-scale interpolation. We adopted three microphysical parameterizations schemes (Morrison, WDM6, and Thompson aerosol-aware) to obtain raindrop size distributions, rainfall kinetic energy, and rainfall erosivity, with validation by two disdrometers and 304 rain gauges around the United Kingdom. Among the three WRF schemes, Thompson aerosol-aware had the best performance compared with the disdrometers at a monthly scale. The results revealed that high rainfall erosivity occurred in the west coast area at the whole country scale during 2013–2017. The proposed methodology makes a significant contribution to improving large-scale soil erosion estimation and for better understanding microphysical rainfall–soil interactions to support the rational formulation of soil and water conservation planning.


Agropedology ◽  
2019 ◽  
Vol 28 (2) ◽  
Author(s):  
S. V. Shejale ◽  
◽  
S. B. Nandgude ◽  
S. S. Salunkhe ◽  
M. A. Phadtare ◽  
...  

Present research work was carried out on soil erosion and crop productivity loss in Palghar and Thane districts. The study also describes tolerable soil loss and relationship between top-soil loss and yield loss. The estimated average annual soil loss was 40.45 t ha-1yr-1 before adoption of the soil and water conservation measures (by USLE method) and estimated average tolerable soil loss was 9.36 t ha-1 yr-1, for Palghar district. Similarly, for Thane district the estimated average annual soil loss and tolerable soil loss were found to be 35.89 t ha-1 yr-1 and 9.61 t ha-1 yr-1, respectively for Thane district. The estimated average conservation practice factor (P) factors were obtained as 0.32 for Palghar district and 0.30 for Thane district to bring the soil loss below the tolerable limit. After adoption of soil and water conservation measures, the estimated soil loss were 9.02 t ha-1 yr-1 and 9.38 t ha-1 yr-1 for Palghar and Thane districts, respectively.


Sign in / Sign up

Export Citation Format

Share Document