Study of Power System Load Flow Using FPGA and LabVIEW

2020 ◽  
Vol 38 (5A) ◽  
pp. 690-697
Author(s):  
Ahmed Y. Yaseen ◽  
Afaneen A. Abbood

The capability to rapidly execute the power flow (PF) calculations permit engineers in assured with stay bigger assured within the dependability, protection, and economical operation of their system within the case of planned or unplanned instrumentality failures. The purpose of this work is to investigate the use of FPGA characteristics to speed up power flow computing time for the on-line monitoring system of a power system. The work comprises which is the development of the Power flow program using the Fast-decoupled method based on FPGA (Field Programmable Gate Array), and LABVIEW (graphical programming environment). The program delivered very satisfactory results to solve a 30-bus test system. These findings suggest that in general that differences between the proposed work and the conventional fast decoupled method are satisfactory. As for the execution time, because the FPGA uses parallel solutions, the performance of the proposed method is faster. Also, the engagement of the FPGA and the LabVIEW program presented an effective monitoring system for observing the power system.

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 148
Author(s):  
Lili Wu ◽  
Ganesh K. Venayagamoorthy ◽  
Jinfeng Gao

Power system steady-state security relates to its robustness under a normal state as well as to withstanding foreseeable contingencies without interruption to customer service. In this study, a novel cellular computation network (CCN) and hierarchical cellular rule-based fuzzy system (HCRFS) based online situation awareness method regarding steady-state security was proposed. A CCN-based two-layer mechanism was applied for voltage and active power flow prediction. HCRFS block was applied after the CCN prediction block to generate the security level of the power system. The security status of the power system was visualized online through a geographic two-dimensional visualization mechanism for voltage magnitude and load flow. In order to test the performance of the proposed method, three types of neural networks were embedded in CCN cells successively to analyze the characteristics of the proposed methodology under white noise simulated small disturbance and single contingency. Results show that the proposed CCN and HCRFS combined situation awareness method could predict the system security of the power system with high accuracy under both small disturbance and contingencies.


2015 ◽  
Vol 740 ◽  
pp. 438-441 ◽  
Author(s):  
Wei Zheng ◽  
Fang Yang ◽  
Zheng Dao Liu

The power flow calculation is study the steady-state operation of the power system as basic electrical calculations. It is given the power system network topology, device parameters and determines system health boundary conditions, draw a detailed operating status of the power system through numerical simulation methods, such as voltage amplitude and phase angle on the bus system the power distribution and the power loss. Flow calculation is the power system operation, planning and safety, reliability analysis, is fundamental to the system voltage regulation, network reconfiguration and reactive power optimization must call the function, so the trend has very important significance to calculate the power system.


2012 ◽  
Vol 433-440 ◽  
pp. 7208-7212
Author(s):  
Ya Min Su Hlaing ◽  
Ze Ya Aung

This thesis implements power flow application, Newton-Raphson method. The Newton-Raphson method is mainly employed in the solution of power flow problems. The network of Myanma electric power system is used as the reference case. The system network contains 90 buses and 106 brunches. The weak points are found in the network by using Newton-Raphson method. Bus 16, 17, 85 and 86 have the most weak bus voltages. The medium transmission line between bus 87 and bus 17 is compensated by using MATLAB program software. The transmission line is compensated with shunt reactors, series and shunt capacitors to improve transient and steady-state stability, more economical loading, and minimum voltage dip on load buses and to supply the requisite reactive power to maintain the receiving end voltage at a satisfactory level. The system performance is tested under steady-state condition. This paper investigates and improves the steady–state operation of Myanma Power System Network.


2011 ◽  
Vol 403-408 ◽  
pp. 4926-4933
Author(s):  
Laxmidhar Sahu ◽  
Jose. P. Therattil ◽  
P. C. Panda

The continuous change in power demand and supply altered the power flow patterns in transmission networks in such a way that some of the corridors are lightly loaded and some of the corridors get over loaded. This raises serious challenge in operating the power system in secure and reliable manner. To cope with this problem Flexible AC Transmission Systems (FACTS) is used. It plays a very important role in improving the power system operating performance. In this paper load flow models for STATCOM and SVC have been developed. Power flow study of a five bus system is carried out with and without FACTS controllers. Results of the power flow studies are obtained with MATLAB programming.


2014 ◽  
Vol 1070-1072 ◽  
pp. 193-199
Author(s):  
Min Jiang Chen ◽  
Yue Qing Chen ◽  
Wang Chao Dong ◽  
Bei Wu

This paper uses the optimal probabilistic load flow method for power containing wind farm analysis. Based on Computation of optimal load flow using the Interior point method ,considering the stochasticlal power output of wind generator and the random outage of synchronous generator and the stochastic of load power, calculating the probability distribution of branch power flow and node voltage. This paper uses RTS-24 as the example to analysis the method ,and comparison the results with that of the Monte-Carlo method, to analysis the change of power system after the grid connected of wind turbine.


2019 ◽  
Vol 11 (6) ◽  
pp. 1744 ◽  
Author(s):  
Qais Alsafasfeh ◽  
Omar Saraereh ◽  
Imran Khan ◽  
Sunghwan Kim

As the unconstrained integration of distributed photovoltaic (PV) power into a power grid will cause changes in the power flow of the distribution network, voltage deviation, voltage fluctuation, and so on, system operators focus on how to determine and improve the integration capacity of PV power rationally. By giving full consideration to the static security index constraints and voltage fluctuation, this paper proposes a maximum integration capacity optimization model of the PV power, according to different power factors for the PV power. Moreover, the proposed research analyzes the large-scale PV grid access capacity, PV access point, and multi-PV power plant output, by probability density distribution, sensitivity analysis, standard deviation analysis, and over-limit probability analysis. Furthermore, this paper establishes accessible capacity maximization problems from the Institute of Electrical and Electronics Engineers (IEEE) standard node system and power system analysis theory for PV power sources with constraints of voltage fluctuations. A MATLAB R2017B simulator is used for the performance analysis and evaluation of the proposed work. Through the simulation of the IEEE 33-node system, the integration capacity range of the PV power is analyzed, and the maximum integration capacity of the PV power at each node is calculated, providing a rational decision-making scheme for the planning of integrating the distributed PV power into a small-scale power grid. The results indicate that the fluctuations and limit violation probabilities of the power system voltage and load flow increase with the addition of the PV capacity. Moreover, the power loss and PV penetration level are influenced by grid-connected spots, and the impact of PV on the load flow is directional.


Author(s):  
Saber Nourizadeh ◽  
Ali Mohammad Ranjbar ◽  
Mahmoud R. Pishvaie ◽  
Morteza Sadeghi

During power system restoration, it is necessary to check the phase angle between two buses before closing circuit breakers to connect a line between them. A novel approach for reducing large standing phase angle (SPA) based on Genetic Algorithm (GA) is presented in this paper. The proposed approach starts with a state estimation on Wide Area Monitoring System (WAMS) data measurements and considering power system operation and angular stability constraints, seeks an optimal control action scenario for reducing SPA. Since these constraints are evaluated based on WAMS data, the presented approach is considerably high speed and accurate. As an optimization problem, objective function of the proposed approach is to minimize variation from the current state of the power system. Simulation results on the IEEE 118 bus test system clearly show efficiency of the approach.


2013 ◽  
Vol 860-863 ◽  
pp. 2112-2116
Author(s):  
Pavel V. Chusovitin ◽  
Andrey V. Pazderin ◽  
Grigory S. Shabalin ◽  
Valery A. Taschilin

The paper is devoted to the stability and feasibility boundary evaluation. New technique for evaluating shortest distance to feasibility boundary is described and tested. The technique is based on analysis of Jacobi matrix form the power flow routine. Described technique can be applied together with PMU-based identification procedures leading to new opportunities for on-line power system stability monitoring.


2012 ◽  
Vol 2012 ◽  
pp. 1-19
Author(s):  
G. Ozdemir Dag ◽  
Mustafa Bagriyanik

The unscheduled power flow problem needs to be minimized or controlled as soon as possible in a deregulated power system since the transmission systems are mostly operated at their power-carrying limits or very close to it. The time spent for simulations to determine the current states of all the system and control variables of the interconnected power system is important. Taking necessary action in case of any failure of equipment or any other occurrence of an undesired situation could be critical. Using supercomputing facilities and parallel computing techniques together decreases the computation time greatly. In this study, a parallel implementation of a multiobjective optimization approach based on both genetic algorithms and fuzzy decision making to manage unscheduled flows is presented. Parallel computation techniques are applied using supercomputers (high-performance computers). The proposed method is applied to the IEEE 300 bus test system. Two different cases for some parameters of GA are considered to see the power of parallel computation technique. Then the simulation results are presented.


Sign in / Sign up

Export Citation Format

Share Document