scholarly journals Diagnosing Soft Tissue Sub-Surface Masses Using the XCS Classification System

2020 ◽  
Vol 9 (1) ◽  
pp. 49
Author(s):  
Navid Moshtaghi Yazdani

Introduction: One of the most common types of cancer is breast cancer, which is considered as the second leading cause of death in women in Iran. Due to the fatality of this type of cancer, it is very important to diagnose the disease in the early stages and starting the treatment process. One of the methods to diagnose breast cancer is using mechanical arms (robot manipulator) to touch and measure the force in terms of displacement at the site of the breast touch by the robot. The hardness of the cancer tissue can affect the force diagram in terms of displacement, which can be used as a diagnostic method. The present study was performed to prepare a simulation model of breast soft tissue behavior considering subsurface masses. Then, a proposed classification system was designed to fit it.Material and Methods: In this section, first, the soft tissue behavior of the breast is simulated by considering sub-surface masses. The simulations are performed for a piece of tissue that is in the shape of a rectangular cube, as well as different dimensions of a spherical mass that is located at different depths and coordinates. Using simulation, various force-displacement diagrams have been obtained, based on which a data network.Results: The displacement force diagram for different modes is obtained using simulation. By giving the resulting diagrams to the trained system, the size and depth of the mass is determined. By comparing the obtained results with the initial model and the actual size and depth of the mass, a very good conformity is observed, which indicates the correct operation of the designed system and the performed simulation process.Conclusion: The proposed design system was used to diagnose the presence of tumors in tissue with sub-surface mass. The results show a high percentage of this method in diagnosis. However, the accuracy of this method can be greatly increased by increasing the amount of data given to the XCS system for training. On the other hand, instead of simulation data, test data on healthy and unhealthy people can be used for training.

Author(s):  
Inzamam Mashood Nasir ◽  
Muhammad Rashid ◽  
Jamal Hussain Shah ◽  
Muhammad Sharif ◽  
Muhammad Yahiya Haider Awan ◽  
...  

Background: Breast cancer is considered as the most perilous sickness among females worldwide and the ratio of new cases is expanding yearly. Many researchers have proposed efficient algorithms to diagnose breast cancer at early stages, which have increased the efficiency and performance by utilizing the learned features of gold standard histopathological images. Objective: Most of these systems have either used traditional handcrafted features or deep features which had a lot of noise and redundancy, which ultimately decrease the performance of the system. Methods: A hybrid approach is proposed by fusing and optimizing the properties of handcrafted and deep features to classify the breast cancer images. HOG and LBP features are serially fused with pretrained models VGG19 and InceptionV3. PCR and ICR are used to evaluate the classification performance of proposed method. Results: The method concentrates on histopathological images to classify the breast cancer. The performance is compared with state-of-the-art techniques, where an overall patient-level accuracy of 97.2% and image-level accuracy of 96.7% is recorded. Conclusion: The proposed hybrid method achieves the best performance as compared to previous methods and it can be used for the intelligent healthcare systems and early breast cancer detection.


Author(s):  
Saliha Zahoor ◽  
Ikram Ullah Lali ◽  
Muhammad Attique Khan ◽  
Kashif Javed ◽  
Waqar Mehmood

: Breast Cancer is a common dangerous disease for women. In the world, many women died due to Breast cancer. However, in the initial stage, the diagnosis of breast cancer can save women's life. To diagnose cancer in the breast tissues there are several techniques and methods. The image processing, machine learning and deep learning methods and techniques are presented in this paper to diagnose the breast cancer. This work will be helpful to adopt better choices and reliable methods to diagnose breast cancer in an initial stage to survive the women's life. To detect the breast masses, microcalcifications, malignant cells the different techniques are used in the Computer-Aided Diagnosis (CAD) systems phases like preprocessing, segmentation, feature extraction, and classification. We have been reported a detailed analysis of different techniques or methods with their usage and performance measurement. From the reported results, it is concluded that for the survival of women’s life it is essential to improve the methods or techniques to diagnose breast cancer at an initial stage by improving the results of the Computer-Aided Diagnosis systems. Furthermore, segmentation and classification phases are challenging for researchers for the diagnosis of breast cancer accurately. Therefore, more advanced tools and techniques are still essential for the accurate diagnosis and classification of breast cancer.


2020 ◽  
Vol 15 ◽  
Author(s):  
Jujuan Zhuang ◽  
Shuang Dai ◽  
Lijun Zhang ◽  
Pan Gao ◽  
Yingmin Han ◽  
...  

Background: Breast cancer is a complex disease with high prevalence in women, the molecular mechanisms of which are still unclear at present. Most transcriptomic studies on breast cancer focus on differential expression of each gene between tumor and the adjacent normal tissues, while the other perturbations induced by breast cancer including the gene regulation variations, the changes of gene modules and the pathways, which might be critical to the diagnosis, treatment and prognosis of breast cancer are more or less ignored. Objective: We presented a complete process to study breast cancer from multiple perspectives, including differential expression analysis, constructing gene co-expression networks, modular differential connectivity analysis, differential gene connectivity analysis, gene function enrichment analysis key driver analysis. In addition, we prioritized the related anti-cancer drugs based on enrichment analysis between differential expression genes and drug perturbation signatures. Methods: The RNA expression profiles of 1109 breast cancer tissue and 113 non-tumor tissues were downloaded from The Cancer Genome Atlas (TCGA) database. Differential expression of RNAs was identified using the “DESeq2” bioconductor package in R, and gene co-expression networks was constructed using the weighted gene co-expression network analysis (WGCNA). To compare the module changes and gene co-expression variations between tumor and the adjacent normal tissues, modular differential connectivity (MDC) analysis and differential gene connectivity analysis (DGCA) were performed. Results: Top differential genes like MMP11 and COL10A1 were known to be associated with breast cancer. And we found 23 modules in the tumor network had significantly different co-expression patterns. The top differential modules were enriched in Goterms related to breast cancer like MHC protein complex, leukocyte activation, regulation of defense response and so on. In addition, key genes like UBE2T driving the top differential modules were significantly correlated with the patients’ survival. Finally, we predicted some potential breast cancer drugs, such as Eribulin, Taxane, Cisplatin and Oxaliplatin. Conclusion: As an indication, this framework might be useful in understanding the molecular pathogenesis of diseases like breast cancer and inferring useful drugs for personalized medication


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2431
Author(s):  
Lukas Lenga ◽  
Simon Bernatz ◽  
Simon S. Martin ◽  
Christian Booz ◽  
Christine Solbach ◽  
...  

Dual-energy CT (DECT) iodine maps enable quantification of iodine concentrations as a marker for tissue vascularization. We investigated whether iodine map radiomic features derived from staging DECT enable prediction of breast cancer metastatic status, and whether textural differences exist between primary breast cancers and metastases. Seventy-seven treatment-naïve patients with biopsy-proven breast cancers were included retrospectively (41 non-metastatic, 36 metastatic). Radiomic features including first-, second-, and higher-order metrics as well as shape descriptors were extracted from volumes of interest on iodine maps. Following principal component analysis, a multilayer perceptron artificial neural network (MLP-NN) was used for classification (70% of cases for training, 30% validation). Histopathology served as reference standard. MLP-NN predicted metastatic status with AUCs of up to 0.94, and accuracies of up to 92.6 in the training and 82.6 in the validation datasets. The separation of primary tumor and metastatic tissue yielded AUCs of up to 0.87, with accuracies of up to 82.8 in the training, and 85.7 in the validation dataset. DECT iodine map-based radiomic signatures may therefore predict metastatic status in breast cancer patients. In addition, microstructural differences between primary and metastatic breast cancer tissue may be reflected by differences in DECT radiomic features.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Débora Ferreira ◽  
Joaquim Barbosa ◽  
Diana A. Sousa ◽  
Cátia Silva ◽  
Luís D. R. Melo ◽  
...  

AbstractTriple-negative breast cancer is the most aggressive subtype of invasive breast cancer with a poor prognosis and no approved targeted therapy. Hence, the identification of new and specific ligands is essential to develop novel targeted therapies. In this study, we aimed to identify new aptamers that bind to highly metastatic breast cancer MDA-MB-231 cells using the cell-SELEX technology aided by high throughput sequencing. After 8 cycles of selection, the aptamer pool was sequenced and the 25 most frequent sequences were aligned for homology within their variable core region, plotted according to their free energy and the key nucleotides possibly involved in the target binding site were analyzed. Two aptamer candidates, Apt1 and Apt2, binding specifically to the target cells with $$K_{d}$$ K d values of 44.3 ± 13.3 nM and 17.7 ± 2.7 nM, respectively, were further validated. The binding analysis clearly showed their specificity to MDA-MB-231 cells and suggested the targeting of cell surface receptors. Additionally, Apt2 revealed no toxicity in vitro and showed potential translational application due to its affinity to breast cancer tissue sections. Overall, the results suggest that Apt2 is a promising candidate to be used in triple-negative breast cancer treatment and/or diagnosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stefania Nobili ◽  
Antonella Mannini ◽  
Astrid Parenti ◽  
Chiara Raggi ◽  
Andrea Lapucci ◽  
...  

AbstractInvasive ductal carcinoma (IDC) constitutes the most frequent malignant cancer endangering women’s health. In this study, a new spontaneously immortalized breast cancer cell line, DHSF-BR16 cells, was isolated from the primary IDC of a 74-years old female patient, treated with neoadjuvant chemotherapy and disease-free 5-years after adjuvant chemotherapy. Primary breast cancer tissue surgically removed was classified as ER−/PR−/HER2+, and the same phenotype was maintained by DHSF-BR16 cells. We examined DHSF-BR16 cell morphology and relevant biological and molecular markers, as well as their response to anticancer drugs commonly used for breast cancer treatment. MCF-7 cells were used for comparison purposes. The DHSF-BR16 cells showed the ability to form spheroids and migrate. Furthermore, DHSF-BR16 cells showed a mixed stemness phenotype (i.e. CD44+/CD24−/low), high levels of cytokeratin 7, moderate levels of cytokeratin 8 and 18, EpCAM and E-Cadh. Transcriptome analysis showed 2071 differentially expressed genes between DHSF-BR16 and MCF-7 cells (logFC > 2, p-adj < 0.01). Several genes were highly upregulated or downregulated in the new cell line (log2 scale fold change magnitude within − 9.6 to + 12.13). A spontaneous immortalization signature, mainly represented by extracellular exosomes-, plasma membrane- and endoplasmic reticulum membrane pathways (GO database) as well as by metabolic pathways (KEGG database) was observed in DHSF-BR16 cells. Also, these cells were more resistant to anthracyclines compared with MCF-7 cells. Overall, DHSF-BR16 cell line represents a relevant model useful to investigate cancer biology, to identify both novel prognostic and drug response predictive biomarkers as well as to assess new therapeutic strategies.


Breast Care ◽  
2021 ◽  
pp. 1-8
Author(s):  
Hans-Jonas Meyer ◽  
Andreas Wienke ◽  
Alexey Surov

Background: Magnetic resonance imaging can be used to diagnose breast cancer (BC).Diffusion-weighted imaging (DWI) and the apparent diffusion coefficient (ADC) can be used to reflect tumor microstructure. Objectives: This analysis aimed to compare ADC values between molecular subtypes of BC based on a large sample of patients. Method: The MEDLINE library and Scopus database were screened for the associations between ADC and molecular subtypes of BC up to April 2020. The primary end point of the systematic review was the ADC value in different BC subtypes. Overall, 28 studies were included. Results: The included studies comprised a total of 2,990 tumors. Luminal A type was diagnosed in 865 cases (28.9%), luminal B in 899 (30.1%), human epidermal growth factor receptor (Her2)-enriched in 597 (20.0%), and triple-negative in 629 (21.0%). The mean ADC values of the subtypes were as follows: luminal A: 0.99 × 10–3 mm2/s (95% CI 0.94–1.04), luminal B: 0.97 × 10–3 mm2/s (95% CI 0.89–1.05), Her2-enriched: 1.02 × 10–3 mm2/s (95% CI 0.95–1.08), and triple-negative: 0.99 × 10–3 mm2/s (95% CI 0.91–1.07). Conclusions: ADC values cannot be used to discriminate between molecular subtypes of BC.


Sign in / Sign up

Export Citation Format

Share Document