Identification of a deformed formation parameters that characterize gas flow in the well bore by the wellhead data

Author(s):  
Kh.A. Feyzullayev ◽  
◽  
M.S. Khalilov ◽  
Keyword(s):  
Gas Flow ◽  
2021 ◽  
Author(s):  
Kristopher A Looten ◽  
Mustansar Raza

Abstract Objectives/Scope A case study is presented detailing the methodology used to place a non-damaging temporary isolation barrier in a group of naturally fractured, prolific gas wells in a field in Kurdistan. The temporary isolation facilitated removal of the original completion string and installation of the redesign. Wells were returned to production with-out the need to stimulate proving success of the non-damaging methodology employed. Methods, Procedures, Process The operator had 4 wells with OH sections ranging from 33-181m which were completed in the 1980’s - 1990's with no production packer. In order to preserve well bore integrity the completion string needed to be pulled and replaced by a string with production packer and DH gauges. A procedure was developed to fill the highly fractured OH with a mixed particle size CaCO3 carried into the wellbore by a non-damaging surfactant based gel. Caliper logs were not available and the presence of natural fractures posed a challenge to calculating the actual OH volume. A system was developed to carry the CaCO3 into the wellbore in stages and slickline was employed to measure fill after each stage. Once the OH was filled with CaCO3 and well would support a fluid column coil tubing was used to place an acid soluble cement plug in the short interval between casing shoe and end of tubing (8-10m) Results, Observations, Conclusions The first well in the campaign required more than 10 times the theoretical volume of CaCO3 to fill the open hole. It was concluded the surfactant gel was likely carrying the CaCO3 into the fractures. The procedure was modified to tie in a line of breaker solution to the well head allowing sufficient viscosity of the fluid to carry the CaCO3 from surface but immediately lose viscosity and allow the CaCO3 to settle in the wellbore without being carried into the formation. Specific coil tubing procedures were employed to allow the setting of ultra-short acid soluble cement plugs (<10m). All wells were successfully isolated to allow the safe workover of the completion string and returned to production with no loss of gas flow, with-out the need to stimulate after the work over. Novel/Additive Information The campaign exhibited a new method of employing existing technologies to achieve the objective in a highly challenging and relatively new oilfield of Kurdistan. The campaign also demonstrated the benefit of the operator and service company closely collaborating on each step of a novel process. The workovers would not have been successful with-out the close collaboration of the two companies.


Author(s):  
Guillermo G. Michel ◽  
Faruk Civan

A review of studies relevant to describing the non-ideal behavior encountered in oil and gas flow through wells is presented. The empirical prediction of liquid holdup and relaxation in time of gas separation from liquid phases are considered as mechanisms for explaining the nonideal behavior. Several features in modeling multiphase flow are discussed. The details of interest are elaborated for each reviewed approach and summarized. An application is presented in order to illustrate the holdup and relaxation profiles for vertical oil wells. The results are obtained by applying a novel formulation for liquid holdup modeling.


Author(s):  
N. David Theodore ◽  
Mamoru Tomozane ◽  
Ming Liaw

There is extensive interest in SiGe for use in heterojunction bipolar transistors. SiGe/Si superlattices are also of interest because of their potential for use in infrared detectors and field-effect transistors. The processing required for these materials is quite compatible with existing silicon technology. However, before SiGe can be used extensively for devices, there is a need to understand and then control the origin and behavior of defects in the materials. The present study was aimed at investigating the structural quality of, and the behavior of defects in, graded SiGe layers grown by chemical vapor deposition (CVD).The structures investigated in this study consisted of Si1-xGex[x=0.16]/Si1-xGex[x= 0.14, 0.13, 0.12, 0.10, 0.09, 0.07, 0.05, 0.04, 0.005, 0]/epi-Si/substrate heterolayers grown by CVD. The Si1-xGex layers were isochronally grown [t = 0.4 minutes per layer], with gas-flow rates being adjusted to control composition. Cross-section TEM specimens were prepared in the 110 geometry. These were then analyzed using two-beam bright-field, dark-field and weak-beam images. A JEOL JEM 200CX transmission electron microscope was used, operating at 200 kV.


Author(s):  
A. R. Landa Canovas ◽  
L.C. Otero Diaz ◽  
T. White ◽  
B.G. Hyde

X-Ray diffraction revealed two intermediate phases in the system MnS+Er2S3,:MnEr2S4= MnS.Er2S3, and MnEr4S7= MnS.2Er2S3. Their structures may be described as NaCl type, chemically twinned at the unit cell level, and isostructural with CaTi2O4, and Y5S7 respectively; i.e. {l13} NaCl twin band widths are (4,4) and (4,3).The present study was to search for structurally-related (twinned B.) structures and or possible disorder, using the more sensitive and appropiate technigue of electron microscopy/diffraction.A sample with nominal composition MnEr2S4 was made by heating Mn3O4 and Er2O3 in a graphite crucible and a 5% H2S in Ar gas flow at 1500°C for 4 hours. A small amount of this material was thenannealed, in an alumina crucible, contained in sealed evacuated silica tube, for 24 days at 1100°C. Both samples were studied by X-ray powder diffraction, and in JEOL 2000 FX and 4000 EX microscopes.


Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


2013 ◽  
Vol 133 (11) ◽  
pp. 858-866 ◽  
Author(s):  
Yasunobu Yokomizu ◽  
Yasuhiro Hayashi ◽  
Toshiro Matsumura ◽  
Amane Majima ◽  
Toshiyuki Uchii ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document