scholarly journals Substantiation of the algorithm for controlling the adjustable electric drive of roller crusher-grinders of forage grain

2020 ◽  
Vol 21 (2) ◽  
pp. 183-198
Author(s):  
M. A. Pryshchepau ◽  
V. A. Daineko ◽  
A. M. Pryshchepava

In recent years, along with the traditional technology of dry grain storage and grinding before feeding, the technology of preserving crushed grain at an early stage of ripeness is widely used. These technologies do not replace each other, but objectively complement each other, that is, they exist in parallel and require appropriate equipment for their implementation. To do this, it is necessary to use universal energy-efficient equipment for crushing feed grain with a high annual load. As such equipment, it is advisable to use roller crusher-grinders with individual electric drive of the rollers. The process of crushing and grinding grain is significantly affected by the physical and mechanical properties of the grain and the design and technological parameters of roller crusher-grinders. Analysis of the strength properties of the grain shows that in order to reduce the energy intensity the process of crushing the grain must be carried out at a higher moisture content and the deformation rate should be as high as possible. When a certain circumferential speed of the rollers is reached, the process reaches both maximum performance and minimum energy consumption. The control algorithm is based on changing the speed of the rollers stepwise from a lower speed to a higher one. In this case, at each stage a metered portion of grain is crushed between the upper and lower flaps of the vertical loading shaft, and the time by which this portion will have been worked out is measured. This procedure is carried out by changing the speed from lower to higher until the speed at which crushing of the portion will take the minimum time is determined. If the technological process requires a grain grinding mode, the speed of one of the rollers increases from the optimal crushing rate. The speed increase occurs as long as the recu-peration current in the parallel-connected DC buses of the frequency converters increases.

Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 70
Author(s):  
Vladimir Dotsenko ◽  
Roman Prokudin ◽  
Alexander Litvinenko

The article deals with the optimal control of the positional electric drive of the stator element of a segment-type wind turbine. The calculation options charts current in the assumption of the minimum energy consumption and the implementation of line chart current using the phenomenon of capacitor discharge. The analysis of the implementation is expressed in a jump-like change in current and a triangular graph of the speed change. This article deals with small capacity synchronous wind turbine generators with a segment type stator. These units have the possibility of intentionally changing the air gap between the rotor and stator. This allows: (1) Reduce the starting torque on the rotor shaft, which will allow the rotor to pick up at low wind speeds. (2) Equivalent to change of air gap in this case is change of excitation of synchronous generators. Thus, the purpose of the article is to consider a method of excitation of generators in a segmented design, by controlling the gap with the electric drive, while providing control should be carried out with minimal losses.


2020 ◽  
pp. 451-457
Author(s):  
Aleksandr Yur'yevich Vititnev ◽  
Yuriy Davydovich Alashkevich ◽  
Natal'ya Geral'dovna Chistova ◽  
Roman Aleksandrovich Marchenko ◽  
Venera Nurullovna Matygullina

This paper presents the results of experimental studies of the physical and mechanical properties of wood-fiber boards of the wet production method when regulating the design and technological parameters of the grinding process. This allowed us to determine the influence of the working clearance between the grinding discs and the concentration of fibre mass with the subject to of quality change wood fiber after defibrator using the developed construction of the disc fibrillation action on the physico-mechanical properties of boards. As a result of the experiment, regression models were obtained that adequately describe the studied grinding process and allow predicting the values of physical and mechanical properties of the finished product depending on the established  parameters process. A comparative analysis of the size and quality characteristics of the fiber semi-finished product and its fractional composition when using a developed construction the disc of refiner fibrillation action and a traditional design used in industry is carried out. The preferential efficiency of the grinding process under the fibrillating effect the disc of refiner in comparison with the traditional construction disc of refiner is established. As a result, there is a significant improvement in the quality indicators of the fiber semi-finished product and its composition due to the formation and predominance in the total mass of long and thin, respectively, flexible fibrillated fibers with high tile-forming properties, which allows to increase the strength properties of the product (by 20–25%), without using binding resins.


2021 ◽  
pp. 66-71
Author(s):  
NIKOLAY V. TSUGLENOK ◽  

The authors have determined the conditions for the eff ective use of modern electrifi ed circular sprinklers in the central part of Russia. Their designs are chosen depending on the agrotechnical requirements for irrigation, including the change in the diameter of the water distribution pipeline. However, when the diameter of the pipeline changes, the load on the electric drive of the support trolleys of the sprinkler changes too, which leads to a corresponding change in energy consumption. In turn, this also changes the load of the water supply pump. The paper sets the task of determining the optimal change in the diameter of pipelines according to the criterion of minimum energy consumption, taking into account a number of assumptions. The authors have analyzed the relationship between the change in the load on the electric drive of the sprinkler support trolley and the change in the diameter of one sprinkler section pipeline. It has been found that a decrease in the diameter by 27% (for example, the transition of the diameter of 219 mm to the diameter of 159 mm) leads to a decrease in the load on the electric drive by 38%. However, this also leads to an increase in the head loss in the water supply pump motor and, respectively, to an increase in the load and energy consumption by 0.8…3.8%. The eff ect is initially obvious, but the power of the electric motor of the water supply pump is 10…25 times higher than that of the electric motor of the sprinkler support trolley. Based on the similarity coeffi cients of the irrigation components (water supply and water distribution), the relationship beteween the total energy consumption and the change in the diameter of the water distribution pipeline has been obtained. By diff erentiating the obtained function, the dependence of the value of the optimal diameter for specifi c operating conditions is also obtained. Graphs of the relationship between energy consumption and the change in diameter have been determined, taking into account some restrictions: pump supply, static pressure, and the number of the sprinkler sections.


Author(s):  
Orlov Maksim Andreyevich Et al.

The article discusses the features of the destruction of carbon fiber reinforced plastics on the basis of tfp-preforms produced using various stitching mode parameters, and provides for studies of their physical and mechanical properties and structure. The effect of the carbon fiber laying density and the piercing step of the aramid yarn on the elastic-strength properties of composites is shown. The optimal technological parameters for creating tfp-preforms of gas turbine engine blades were chosen.


Author(s):  
L. F. Sennikova ◽  
G. K. Volkova ◽  
V. M. Tkachenko

The results of studies of the stress-strain state of copper M0b after deformation under different schemes of equal channel angular pressing (ECAP) are presented. The level of macro and micro stresses in copper has been determined in various ECAP modes. It is shown that the strength properties, deformation porosity and parameters of the fine copper structure differ depending on the loading pattern.


Author(s):  
C. Jothikumar ◽  
Revathi Venkataraman ◽  
T. Sai Raj ◽  
J. Selvin Paul Peter ◽  
T.Y.J. Nagamalleswari

Wireless sensor network is a wide network that works as a cutting edge model in industrial applications. The sensor application is mostly used for high security systems that provide safety support to the environment. The sensor system senses the physical phenomenon, processes the input signal and communicates with the base station through its neighbors. Energy is the most important criterion to support a live network for long hours. In the proposed system, the EUCOR (Efficient Unequal Clustering and Optimized Routing) protocol uses the objective function to identify the efficient cluster head with variable cluster size. The computation of the objective function deals with the ant colony approach for minimum energy consumption and the varying size of the cluster in each cycle is calculated based on the competition radius. The system prolongs the lifespan of the nodes by minimizing the utilization of energy in the transmission of packets in the networks when compared with the existing system.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1157
Author(s):  
Danka Labus Zlatanovic ◽  
Sebastian Balos ◽  
Jean Pierre Bergmann ◽  
Stefan Rasche ◽  
Milan Pecanac ◽  
...  

Friction stir spot welding is an emerging spot-welding technology that offers opportunities for joining a wide range of materials with minimum energy consumption. To increase productivity, the present work addresses production challenges and aims to find solutions for the lap-welding of multiple ultrathin sheets with maximum productivity. Two convex tools with different edge radii were used to weld four ultrathin sheets of AA5754-H111 alloy each with 0.3 mm thickness. To understand the influence of tool geometries and process parameters, coefficient of friction (CoF), microstructure and mechanical properties obtained with the Vickers microhardness test and the small punch test were analysed. A scanning acoustic microscope was used to assess weld quality. It was found that the increase of tool radius from 15 to 22.5 mm reduced the dwell time by a factor of three. Samples welded with a specific tool were seen to have no delamination and improved mechanical properties due to longer stirring time. The rotational speed was found to be the most influential parameter in governing the weld shape, CoF, microstructure, microhardness and weld efficiency. Low rotational speeds caused a 14.4% and 12.8% improvement in joint efficiency compared to high rotational speeds for both tools used in this investigation.


Sign in / Sign up

Export Citation Format

Share Document