Formation of oxygen bubbles in K-208 glass under electron irradiation

2020 ◽  
Vol 11 ◽  
pp. 5-14
Author(s):  
R. Kh. Khasanshin ◽  
◽  
L. S. Novikov ◽  
◽  

The formation of gas-filled bubbles, which is one of the indicators and quantitative criteria for radiation degradation of the surface layer of K-208 glass irradiated by 20-keV electrons, and the effect of ITO (Indium tin oxide) film deposited on the glass, are investigated. Using atomic force microscopy, the nucleation of oxygen bubbles in the surface layer of glass irradiated with a fluence (Φ) of the order of 1015 cm–2 at a particle flux density (φ) of 2·1010 cm–2·s–1 was detected. Gas-filled bubbles appear on the surface of samples with an ITO film at Φ ≥ 4·1015 cm–2 in smaller amounts but larger sizes than on glass without a film. The formation of oxygen bubbles is explained by the formation of a negative charge region in the surface layer of the irradiated glass, in the field of which sodium ions migrate, which plays a key role in the release of non-bridge oxygen atoms. Migration and aggregation of liberated oxygen atoms in defective places in the glass grid leads to the formation of gas-filled bubbles.

2014 ◽  
Vol 680 ◽  
pp. 131-134
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Steven Taniselass ◽  
Norhawati Ahmad ◽  
Chai Jee Keng ◽  
...  

An initial study has been conducted to characterize the surface morphology of treated Indium Tin Oxide (ITO). Treatment done is annealing process where the samples are put through heat and annealed for an hour. Time of deposition and layers of ITO has been varied to study the correlation between both.The treated ITO are examined under Atomic Force Microscopy (AFM) for the surface roughness and the grain size. Results shows that deposition time of ITO do play an important role in determining a desired grain size in ITO material.


Biosensors ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 118
Author(s):  
Rodica Ionescu ◽  
Raphael Selon ◽  
Nicolas Pocholle ◽  
Lan Zhou ◽  
Anna Rumyantseva ◽  
...  

Conductive indium-tin oxide (ITO) and non-conductive glass substrates were successfully modified with embedded gold nanoparticles (AuNPs) formed by controlled thermal annealing at 550 °C for 8 h in a preselected oven. The authors characterized the formation of AuNPs using two microscopic techniques: scanning electron microscopy (SEM) and atomic force microscopy (AFM). The analytical performances of the nanostructured-glasses were compared regarding biosensing of Hsp70, an ATP-driven molecular chaperone. In this work, the human heat-shock protein (Hsp70), was chosen as a model biomarker of body stress disorders for microwave spectroscopic investigations. It was found that microwave screening at 4 GHz allowed for the first time the detection of 12 ng/µL/cm2 of Hsp70.


ACS Nano ◽  
2019 ◽  
Vol 13 (6) ◽  
pp. 6917-6924 ◽  
Author(s):  
Yuuki Adachi ◽  
Huan Fei Wen ◽  
Quanzhen Zhang ◽  
Masato Miyazaki ◽  
Yasuhiro Sugawara ◽  
...  

2001 ◽  
Vol 666 ◽  
Author(s):  
Hiromichi Ohta ◽  
Masahiro Orita ◽  
Masahiro Hirano ◽  
Hideo Hosono

ABSTRACTIndium-tin-oxide films were grown hetero-epitaxially on YSZ surface at a substrate temperature of 900 °C, and their surface microstructures were observed by using atomic force microscopy. ITO films grown on (111) surface of YSZ exhibited very high crystal quality; full width at half maximum of out-of-plane rocking curve was 54 second. The ITO was grown spirally, with flat terraces and steps corresponding to (222) plane spacing of 0.29 nm. Oxygen pressure during film growth is another key factor to obtain atomically flat surfaced ITO thin film.


2014 ◽  
Vol 92 (7/8) ◽  
pp. 728-731 ◽  
Author(s):  
G.P. Lindberg ◽  
T. O’Loughlin ◽  
N. Gross ◽  
A. Reznik ◽  
S. Abbaszadeh ◽  
...  

Photo-induced crystallization (PC) is studied in amorphous selenium (a-Se) films deposited on glass with and without intermediate layers of indium tin oxide or polymer material. The spatial profile of PC domains is examined by co-localized scanning atomic force microscopy and Raman mapping. We also explore the thermal behavior of the onset and growth of PC in the a-Se films by Raman spectroscopy measurements at temperatures spanning the glass transition (Tg ∼ 313 K). In many films the onset time for PC shows a surprising discontinuity near Tg. Inserting a thin polyimide layer between the a-Se film and the substrate inhibits PC. Our results indicate that adhesion to a rigid substrate is important for promoting PC in a-Se films. We find that the discontinuities in the PC onset times, the shape of the mapping profiles, and the effects of having a soft polymer interface layer can be understood by a model that takes account of the substrate shear strain and its relaxation near Tg.


2020 ◽  
Vol 2 ◽  
Author(s):  
Indra Sulania ◽  
R. Blessy Pricilla ◽  
G. B. V. S. Lakshmi

Nanocomposite materials are multi-phase materials, usually solids, which have two or more component materials having different chemical and physical properties. When blended together, a newer material is formed with distinctive properties which make them an eligible candidate for many important applications. In the present study, thin films of nafion (polymer) and hematite or α-Fe2O3 (nanoparticles) nanocomposite is fabricated on indium tin oxide (ITO) coated glass substrates, due to its enhanced ionic conductivity, for cholesterol biosensor applications. Scanning electron microscopy and Atomic force microscopy revealed the formation of nanorod structured α-Fe2O3 in the films. The cyclic voltammetry (CV) studies of nafion-α-Fe2O3/ITO revealed the redox properties of the nanocomposites. The sensing studies were performed on nafion-α-Fe2O3/CHOx/ITO bioelectrode using differential pulse voltammetry (DPV) at various concentrations of cholesterol. The enzyme immobilization leaded to the selective detection of cholesterol with a sensitivity of 64.93 × 10−2 μA (mg/dl)−1 cm−2. The enzyme substrate interaction (Michaelis–Menten) constant Km, was obtained to be 19 mg/dl.


2011 ◽  
Vol 26 (22) ◽  
pp. 3900-3909 ◽  
Author(s):  
A. A. BANISHEV ◽  
CHIA-CHENG CHANG ◽  
U. MOHIDEEN

Some experimental procedures and corresponding results of the precision measurement of the Casimir force between low doped Indium Tin Oxide ( ITO ) film and gold sphere are described. Measurements were performed using an Atomic Force Microscope in high vacuum. It is shown that the magnitude of the Casimir force decreases after prolonged UV treatment of the ITO film. Some critical data analysis steps such as the correction for the mechanical drift of the sphere-plate system and photodiodes are discussed.


Sign in / Sign up

Export Citation Format

Share Document