scholarly journals Expansion of the genotypic variability in watermelon by physical mutagenesis

Author(s):  
O. N. Shabetia ◽  
O. V. Serhienko ◽  
E. N. Mohilnaia ◽  
S. I. Kondratenko ◽  
L. V. Morhun

Purpose. Studies have been conducted on 18 promising watermelon genotypes to expand the genotypic variability of watermelon by induced mutagenesis. Materials and methods. Air-dried seeds were irradiated with a closed 60Co γ-source «Doslidnyk» (Department of Molecular and Medical Biophysics, Faculty of Radiophysics, Biomedical Electronics and Computer Systems, V.N. Karazin Kharkiv National University of MES of Ukraine). Results and discussion. Each of the most informative breeding traits was statistically analyzed for their expression patterns and levels by variants of mutagenic treatment (different doses - 150 Gy, 200 Gy, and 250 Gy) in each of the 18 genotypes. The patterns of influence of the irradiation doses on plant growth and development have been determined, both in individual genotypes and for the whole sample. It has been found that γ-irradiation had a depressing effect in the majority of genotypes (late maturation, long or short stems, altered order of the 1st female flower formation, extended phases of the growing period). Genotypes and their groups (clusters), in which expression of traits is opposite (alternative), have been identified. Sources of economically valuable traits have been identified, and the following effective doses of γ-irradiation have been established for genotypes (clusters): 4 genotypes of cluster 4 γ-irradiated at 250 Gy ‑ in breeding for yield capacity; 2 genotypes of cluster 3 γ-irradiated at 150 ‑ 250 Gy – in breeding for marketability; 3 genotypes of clusters 3 γ-irradiated at 150, 200 or 250 Gy – in breeding for large fruits: 1 genotype of cluster 5 γ-irradiated at 150, 200 or 250 Gy – in breeding for late maturation; 2 genotypes of cluster 3 γ-irradiated at 200 or 250 Gy and 5 genotypes of cluster 5 γ-irradiated at 150 or 200 Gy– in breeding for early maturation; 3 genotypes of cluster 3 γ-irradiated at 200 or 250 Gy and 7 genotypes of cluster 5 γ-irradiated at 150, 200 and especially 250 Gy – in breeding for long stems; and 1 genotype of cluster 1 γ-irradiated at 150, 200 or 250 Gy – in breeding for short stems

2012 ◽  
Vol 11 (3) ◽  
pp. 357-361
Author(s):  
Hiromi Ikeura ◽  
Takahiko Tokuda ◽  
Yasuyoshi Hayata

2014 ◽  
Vol 94 (7) ◽  
pp. 1181-1193 ◽  
Author(s):  
Shunli Wang ◽  
Jingqi Xue ◽  
Noorollah Ahmadi ◽  
Patricia Holloway ◽  
Fuyong Zhu ◽  
...  

Wang, S., Xue, J., Ahmadi, N., Holloway, P., Zhu, F., Ren, X. and Zhang, X. 2014. Molecular characterization and expression patterns of PsSVP genes reveal distinct roles in flower bud abortion and flowering in tree peony (Paeonia suffruticosa). Can. J. Plant Sci. 94: 1181–1193. Container culture and flower forcing are used for off-season production of tree peony for the Chinese Spring Festival. Storage of potted tree peony for 10 d at 12°C in a refrigerator before 4°C chilling treatment can help new root growth and promote leaf development. Development from bud swelling to anthesis was divided into nine stages. Some aborted flower buds usually emerge in Stage III. Removal of two to four leaflets in an alternating pattern and applying gibberellic acid 3 (GA3) around the flower bud at Stage III can decrease the flower bud abortion rate and promote flower formation rate. Two MADS-box genes with homology to Arabidopsis SVP, designated PsSVP1 and PsSVP2, which probably caused flower-bud abortion, were isolated by reverse transcription-PCR. Sequence comparison analysis showed that PsSVP was most similar to SVP-like gene in apple. Phylogenetic analysis indicates that PsSVP was evolutionarily close to SVP-like genes from Malus domestica, SVP genes from Cruciferae and SVP-like genes from Vitis vinifera. The qRT-PCR results suggested that expression of PsSVP was high in vegetative growth phase, especially in the leaves of tree peony, and its expression was regulated by GA3. Further analysis showed that more PsSVP transcripted in the aborted flower bud, especially in the buds where leaflets grew well. It was deduced that PsSVP can promote vegetative growth and suppress flowering in tree peony. Thus, it is very important to further investigate PsSVP and decipher the mechanisms of flower-bud abortion to improve forcing culture of tree peony.


1997 ◽  
Vol 7 (3) ◽  
pp. 229-240 ◽  
Author(s):  
Han C.G. Kemper ◽  
G. Bertheke Post ◽  
Jos W.R. Twisk

This longitudinal study evaluates the relationship of food intake and physical activity with biological maturation of 200 boys and girls during adolescence and young adulthood. The subjects were followed during 9 years from ages 12 to 22 years, with repeated measurements at ages 13, 14, 15, 16, and 21. Biological maturation was estimated four times between ages 12 and 17 as skeletal age by radiographs of the left hand and wrist. Daily nutritional intake (macro- and micronutrients) was assessed with a cross-checked dietary history method. Daily physical activity was assessed through structured interview, whereby average weekly time spent in activity was used to assign a weighted activity score. The 107 girls and 93 boys were divided into three maturity groups: early maturers, late maturers, and average maturers. It was concluded that in both sexes, late maturation seemed to coincide with a higher energetic food intake and a slightly higher activity pattern than early maturation during adolescence.


2021 ◽  
Author(s):  
Jenni M. Prokkola ◽  
Eirik R Åsheim ◽  
Sergey Morozov ◽  
Paul Bangura ◽  
Jaakko Erkinaro ◽  
...  

1. The physiological underpinnings of life history adaptations in ectotherms are not well understood. Theories suggest energy metabolism influences life history variation via modulation of resource acquisition. However, the genetic basis of this relation and its dependence on ecological conditions, such as food availability, have rarely been characterized, despite being critical to predicting the responses of populations to environmental changes. 2. The Atlantic salmon (Salmo salar) is an emerging wild model species for addressing these questions; strong genetic determination of age-at-maturity at two unlinked genomic regions (vgll3 and six6) enables the use of complex experimental designs and tests of hypotheses on the physiological and genetic basis of life-history trait variation. 3. In this study, we crossed salmon to obtain individuals with all combinations of late and early maturation genotypes for vgll3 and six6 within full-sib families. Using more than 250 juveniles in common garden conditions, we tested (i) whether metabolic phenotypes (i.e., standard and maximum metabolic rates, and absolute aerobic scope) were correlated with the age-at-maturity genotypes and (ii) if high vs. low food availability modulated the relationship. 4. We found that salmon with vgll3 early maturation genotype had a higher aerobic scope and maximum metabolic rate, but not standard metabolic rate, compared to salmon with vgll3 late maturation genotype. This suggests that physiological or structural pathways regulating maximum oxygen supply or demand are potentially important for the determination of age-at-maturity in Atlantic salmon. 5. Vgll3 and six6 exhibited physiological epistasis, whereby maximum metabolic rate significantly decreased when late maturation genotypes were present concurrently in both loci compared to other genotype combinations. 6. The growth of the feed restricted group decreased substantially compared to the high food group. However, the effects of life-history genomic regions were similar in both feeding regimes, indicating a lack of genotype-by-environment interactions. 7. Our results indicate that aerobic performance of juvenile salmon may affect their age-at-maturity. The results may help to better understand the mechanistic basis of life-history variation, and the metabolic constrains on life-history evolution.


1949 ◽  
Vol 18 (1-2) ◽  
pp. 52-56
Author(s):  
Y. MORITA ◽  
K. SUZUKI

2003 ◽  
Vol 82 (1) ◽  
pp. 17-22 ◽  
Author(s):  
E. Fukumoto ◽  
H. Sakai ◽  
S. Fukumoto ◽  
T. Yagi ◽  
O. Takagi ◽  
...  

Cadherins are cell adhesion molecules that are critical for tissue development. In this report, we identified members of the cadherin family cadherin-related neuronal receptors (CNRs) 1 and 5 expressed in rat incisors by the differential display method. Quantitative RT-PCR revealed that CNR1 mRNA is expressed in the secretory stage but reduced in the early-maturation stage, while CNR5 mRNA is expressed in both these stages. In situ hybridization showed that strong expression of CNR1 is strong in the secretory stage, but reduced in the early phase and diminished in the late phase of the early-maturation stage. CNR5 mRNA is expressed almost at the same levels in the secretory and in the early phase of the early-maturation stages but is absent in the late phase of the early-maturation stage. Both CNR1 and 5 mRNA are continuously expressed in odontoblasts. Immunohistology showed that CNR proteins are expressed in the secretory and early-maturation stages of ameloblasts, but no protein expression at the late-maturation stage was observed. CNR proteins were continuously expressed in odontoblasts. We found that recombinant CNR1 binds dental epithelial and mesenchymal cells through N-terminal domain EC1 in vitro. These results suggest that CNR1 and CNR5 may play an important role in enamel and dentin formation, probably through cell-cell and/or cell-matrix interactions.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1131b-1131
Author(s):  
Amnon Levi ◽  
Hazel Y. Wetzstein ◽  
Glen A. Galau

The coordinate expression of mRNA classes in pecan (Carya illinoensis) zygotic and somatic embryos has been studied. MRNA was isolated from zygotic embryos at early and late maturation stages (12 to 22 weeks post-pollination) and during germination. Additionally, mRNA was isolated from somatic embryos derived from a repetitive embryogenic system prior and after cold (6 weeks at 4°C) and desiccation treatments (5 days). These treatments have been determined to enhance somatic embryo conversion. The abundance of embryogenic mRNA classes was determined using various cloned cotton mRNA probes (Hughes and Galau, 1989). This study is a part of our efforts to elucidate the developmental and physiological differences between zygotic and somatic embryo systems in pecan.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2721
Author(s):  
Chao Tan ◽  
Huilei Qiao ◽  
Ming Ma ◽  
Xue Wang ◽  
Yunyun Tian ◽  
...  

The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor families in plants and plays crucial roles in plant development. Melon is an important horticultural plant as well as an attractive model plant for studying fruit ripening. However, the bHLH gene family of melon has not yet been identified, and its functions in fruit growth and ripening are seldom researched. In this study, 118 bHLH genes were identified in the melon genome. These CmbHLH genes were unevenly distributed on chromosomes 1 to 12, and five CmbHLHs were tandem repeat on chromosomes 4 and 8. There were 13 intron distribution patterns among the CmbHLH genes. Phylogenetic analysis illustrated that these CmbHLHs could be classified into 16 subfamilies. Expression patterns of the CmbHLH genes were studied using transcriptome data. Tissue specific expression of the CmbHLH32 gene was analysed by quantitative RT-PCR. The results showed that the CmbHLH32 gene was highly expressed in female flower and early developmental stage fruit. Transgenic melon lines overexpressing CmbHLH32 were generated, and overexpression of CmbHLH32 resulted in early fruit ripening compared to wild type. The CmbHLH transcription factor family was identified and analysed for the first time in melon, and overexpression of CmbHLH32 affected the ripening time of melon fruit. These findings laid a foundation for further study on the role of bHLH family members in the growth and development of melon.


2021 ◽  
Vol 22 (5) ◽  
pp. 2396
Author(s):  
Ekaterina Proshkina ◽  
Elena Yushkova ◽  
Liubov Koval ◽  
Nadezhda Zemskaya ◽  
Evgeniya Shchegoleva ◽  
...  

Small RNAs are essential to coordinate many cellular processes, including the regulation of gene expression patterns, the prevention of genomic instability, and the suppression of the mutagenic transposon activity. These processes determine the aging, longevity, and sensitivity of cells and an organism to stress factors (particularly, ionizing radiation). The biogenesis and activity of small RNAs are provided by proteins of the Argonaute family. These proteins participate in the processing of small RNA precursors and the formation of an RNA-induced silencing complex. However, the role of Argonaute proteins in regulating lifespan and radioresistance remains poorly explored. We studied the effect of knockdown of Argonaute genes (AGO1, AGO2, AGO3, piwi) in various tissues on the Drosophila melanogaster lifespan and survival after the γ-irradiation at a dose of 700 Gy. In most cases, these parameters are reduced or did not change significantly in flies with tissue-specific RNA interference. Surprisingly, piwi knockdown in both the fat body and the nervous system causes a lifespan increase. But changes in radioresistance depend on the tissue in which the gene was knocked out. In addition, analysis of changes in retrotransposon levels and expression of stress response genes allow us to determine associated molecular mechanisms.


1974 ◽  
Vol 54 (4) ◽  
pp. 771-776 ◽  
Author(s):  
DANIEL J. CANTLIFFE

Chlorflurenol (methyl-2-chloro-9-hydroxyfluorene-(9)-carboxylate) was applied to four cultivars of cucumber (Cucumis sativus L.) grown in the greenhouse to determine its effect on sex expression, fruit set, and plant growth habit. The chlorflurenol was applied at three stages of growth, the first, second and fourth true-leaf stages, at concentrations of 0, 0.1, 1.0, 10.0 and 100 ppm. At 0.1 ppm or 1 ppm, chlorflurenol promoted male flower development in predominantly female (PF) Pioneer and monoecious Galaxy. However, at 10 or 100 ppm, chlorflurenol reduced male flower development in monoecious cultivars Galaxy and Wisconsin SMR 58 and in PF Explorer. The effectiveness of chlorflurenol in doing this was dependent on the stage of growth applied. Chlorflurenol did not affect female flower formation. Black-spined Pioneer and Wisconsin SMR 58 produced twice as many fruit per plant as white-spined Explorer and Galaxy when 100 ppm chlorflurenol was applied at the fourth-leaf stage. Plant growth was terminated in all cultivars at the 100-ppm concentration. It was proposed that yields of pickling cucumbers harvested once-over could be improved by increasing plant populations and applying chlorflurenol in the fourth-leaf stage to limit growth and promote fruit set.


Sign in / Sign up

Export Citation Format

Share Document