The Effects of Photovoltaic Panel’s Temperature towards Photovoltaic Electrical Power Output

2021 ◽  
Vol 02 (02) ◽  
Author(s):  
Nor Izzati Mohd Salleh ◽  
◽  
Ahmad Fateh Mohamad Nor ◽  
Siti Amely Jumaat ◽  
Jabbar Al-Fattah Yahaya ◽  
...  

Photovoltaic (PV) system is recognized as one of the most current renewable energy types in producing electrical power. The theories that science explain related to the function of the sun is in accordance with what is also described in the Qur'an. There is one ayah Quran related to the Greatness of Allah and The Mercy which is “And from among His Signs are the night and the day, and the sun and the moon. Prostrate yourselves to Allah Who created them, if you (really) worship Him [Fussilat:37]. However, one of the main issues of PV system is that the performance of the system is highly dependent to environmental conditions such as weather and solar irradiance. Increases in temperature reduce the band gap of a semiconductor. The decrease in the band gap of a semiconductor with increasing temperature can be viewed as increasing the energy of the electrons in the material. The parameter most affected by an increase in temperature is the open circuit voltage. Temperature coefficient indicates how much will be the decrement in power output if PV module. Hence, it is important to predict the actual generating output power of PV systems. This study investigates the relationship between the temperatures of the PV panel with the PV power output. The PV systems installed at the rooftop of Mega label SDN. BHD. with type of poly-crystalline 405.72KWP has been chosen as the reference system in this study. The results have shown that the rise of PV panel’s temperature will make the value of the PV electrical power output decreases.

Author(s):  
Mohamad Modrek ◽  
Ali Al-Alili

Photovoltaic thermal collectors (PVT) combines technologies of photovoltaic panels and solar thermal collectors into a hybrid system by attaching an absorber to the back surface of a PV panel. PVT collectors have gained a lot of attention recently due to the high energy output per unit area compared to a standalone system of PV panels and solar thermal collectors. In this study, performance of a liquid cooled flat PVT collector under the climatic conditions of Abu Dhabi, United Arab Emirates was experimentally investigated. The electrical performances of the PVT collector was compared to that of a standalone PV panel. Moreover, effect of sand accumulation on performance of PVT collectors was examined. Additionally, effect of mass flow rate on thermal and electrical output of PVT collector was studied. Electrical power output is slightly affected by changes in mass flow rate. However, thermal energy increased by 22% with increasing flow rate. Electrical power output of a PV panel was found to be 38% lower compared to electrical output of PVT collectors. Dust accumulation on PVT surface reduced electrical power output up to 7% compared with a reference PVT collector.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 321 ◽  
Author(s):  
Dmitry Baimel ◽  
Saad Tapuchi ◽  
Yoash Levron ◽  
Juri Belikov

This paper proposes two new Maximum Power Point Tracking (MPPT) methods which improve the conventional Fractional Open Circuit Voltage (FOCV) method. The main novelty is a switched semi-pilot cell that is used for measuring the open-circuit voltage. In the first method this voltage is measured on the semi-pilot cell located at the edge of PV panel. During the measurement the semi-pilot cell is disconnected from the panel by a pair of transistors, and bypassed by a diode. In the second Semi-Pilot Panel method the open circuit voltage is measured on a pilot panel in a large PV system. The proposed methods are validated using simulations and experiments. It is shown that both methods can accurately estimate the maximum power point voltage, and hence improve the system efficiency.


The photovoltaic (PV) panel performances are dependent upon many factors. A study was executed to ascertain the effect of a V-Trough Concentrator (VTC) to be engaged on a PV Panel in this research where the performance of PV panels are compared at different surface temperatures both back and front. The experiment was conducted using two similar rated monocrystalline PV panels. One of the PV panels was installed with a VTC while the other is without the VTC that served as Control for benchmark purposes. The optimum VTC selected is a 60° VTC. Both PV systems were built with a lower supporting mechanism and were placed to operate under similar operating and weather situations, while the PV panel surface temperature both front surface and back surface, Open Circuit Voltage (Voc), as well as Short-Circuit Current (Isc) readings are being recorded down at specific time. The theoretical output is determined and compared. This paper ends with a presentation of the results obtained in a study on the PV panel surfaces temperature in relation to its performance by PV system using a 60o VTC.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
J. Charles Franklin ◽  
M. Chandrasekar ◽  
D. Ansalam Mattius

Abstract The thermal and electrical performance of the solar photovoltaic (PV) panel of a solar photovoltaic thermal (PVT) air system is determined experimentally in the present work. For this purpose, a data acquisition system was developed indigenously using ATMEL MEGA 2560 and ATMEL 328 microcontrollers. The parameters measured were PV panel surface temperature, inlet and outlet air temperatures, PV current, and voltage. The parameters were also compared with those of a reference PV system to demonstrate the effect of cooling of PV panel on its electrical power output. The experiments were performed in the locality of Tiruchirappalli, Tamilnadu, India (11 deg N latitude, 79 deg E longitude) and the working of the PV data acquisition was tested for a period of 3 months from February to April 2017. The results indicate acceptable working of the indigenously developed PV/PVT data acquisition system.


2006 ◽  
Vol 3 (2) ◽  
pp. 1
Author(s):  
Ahmad Maliki Omar ◽  
Muhamad Rizuan Yahir ◽  
Sulaiman Shaari ◽  
Abdul Rahman Omar

This paper presents and describes a prototype product code-named SolT2A which is a system that tracks the position of the sun automatically across the celestial vault in two axes. This kind of system is typically used in a solar photovoltaic (PV) system in terrestrial applications to provide electrical power. It is designed and fabricated due to Malaysia’s location near the equator, thus the solar altitude crosses the zenith and the azimuth reverses direction during the year. Thus the use of a static PV system is not maximised during half of the year. This situation can be addressed by using a two-axes solar tracking system. So far, Malaysia has not implemented such power-tracking systems. Thus SolT2A has been designed and fabricated to address the problem by using a combination of electro-mechanical devices with an element of programming ingenuity and intelligence. Basically SolT2A measures solar irradiance at four points and makes comparisons in terms of the intensity received. These data are then analysed and processed by a controller before being sent to a DC motor that ensures the maximum amount of solar irradiance received on the PV panels all the time. Thus SolT2A is a system that maximises the power output of the PV panels to obtain the highest power output continuously. Based on field data, the maximum output open circuit voltage produced by the SolT2A tracking system and that with a static PV system is as much as 82 %. The overall increase in open circuit voltage production is between 15 to 20 % daily. With the technical know-how and proven prototype, Malaysia can look into joining the small and limited but niche pool of expertise in this area. This will not only give immediate socio-economic impact to the population, but will give an upgrade to Malaysia as a country with expertise in the area. This concept could also be applied to defence systems. With further testing and improvement, SolT2A system can be further upgraded to reach a commercial stage. This will definitely be of commercial interest to the country.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3863
Author(s):  
Tiago Alves ◽  
João Paulo N. Torres ◽  
Ricardo A. Marques Lameirinhas ◽  
Carlos A. F. Fernandes

The effect of partial shading in photovoltaic (PV) panels is one of the biggest problems regarding power losses in PV systems. When the irradiance pattern throughout a PV panel is inequal, some cells with the possibility of higher power production will produce less and start to deteriorate. The objective of this research work is to present, test and discuss different techniques to help mitigate partial shading in PV panels, observing and commenting the advantages and disadvantages for different PV technologies under different operating conditions. The motivation is to contribute with research, simulation, and experimental work. Several state-of-the-artsolutions to the problem will be presented: different topologies in the interconnection of the panels; different PV system architectures, and also introducing new solution hypotheses, such as different cell interconnections topologies. Alongside, benefits and limitations will be discussed. To obtain actual results, the simulation work was conducted by creating MATLAB/Simulink models for each different technique tested, all centered around the 1M5P PV cell model. The several techniques tested will also take into account different patterns and sizes of partial shading, different PV panel technologies, different values of source irradiation, and different PV array sizes. The results will be discussed and validated by experimental tests.


Author(s):  
Y. Yang ◽  
J. Y. Chang ◽  
L. P. Wang

The photon transport and energy conversion of a near-field thermophotovoltaic (TPV) system with a selective emitter composed of alternate tungsten and alumina layers and a photovoltaic cell sandwiched by electrical contacts are theoretically investigated in this paper. Fluctuational electrodynamics along with the dyadic Green’s function for a multilayered structure is applied to calculate the spectral heat flux, and photocurrent generation and electrical power output are solved from the photon-coupled charge transport equations. The tungsten and alumina layer thicknesses are optimized to match the spectral heat flux with the bandgap of TPV cell. The spectral heat flux is much enhanced when plain tungsten emitter is replaced with the multilayer emitter due to the mechanism of surface plasmon polariton coupling in the tungsten thin film. In addition, the invalidity of effective medium theory to predict photon transport in the near field with multilayer emitters is discussed. Effects of a gold back reflector and indium tin oxide front coating with nanometer thickness, which could practically act as the electrodes to collect the photon-generated charges on the TPV cell, are explored. Conversion efficiency of 23.7% and electrical power output of 0.31 MW/m2 are achieved at 100 nm vacuum gap when the emitter and receiver are respectively at temperatures of 2000 K and 300 K.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1895
Author(s):  
Mohammad Uddin ◽  
Shane Alford ◽  
Syed Mahfuzul Aziz

This paper focuses on the energy generating capacity of polyvinylidene difluoride (PVDF) piezoelectric material through a number of prototype sensors with different geometric and loading characteristics. The effect of sensor configuration, surface area, dielectric thickness, aspect ratio, loading frequency and strain on electrical power output was investigated systematically. Results showed that parallel bimorph sensor was found to be the best energy harvester, with measured capacitance being reasonably acceptable. Power output increased with the increase of sensor’s surface area, loading frequency, and mechanical strain, but decreased with the increase of the sensor thickness. For all scenarios, sensors under flicking loading exhibited higher power output than that under bending. A widely used energy harvesting circuit had been utilized successfully to convert the AC signal to DC, but at the sacrifice of some losses in power output. This study provided a useful insight and experimental validation into the optimization process for an energy harvester based on human movement for future development.


Sign in / Sign up

Export Citation Format

Share Document